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The Air Force Office of Scientific Research (AFOSR) c ntrat-is-concerned

with experimental and theoretical investigations on electrically conducting

aerosols for electromagnetic obscuration applications. Presented below is the

progress made in the theoretical analysis of aerosols consisting of magnetic

(FeCo,Ni) particle chains in air. Particular attention is given to the

effects of an external magnetic field on the chain equilibrium and the

coagulation dynamics.

1. A theory of the diffusion of macroscopic, magnetic particles (sus-

pended in gaseous or liquio media) in density and magnetic field gradients has

been developed from first principles (Fokker-Planck equation), in which the

influence of the random, fluctuating magnetic fields, produced collectively by

the magnetic dipole particles in their thermal motions on the diffusing parti-

cle, is taken into account in a self-consistent way. As an application, the

steady-state boundary-value problem for the diffusion of magnetic grains in

the inhomogeneous magnetic field of an adsorbing sink dipole and an external,

homogeneous magnetic field has been solved by means of a stream and Green's

functions approach. The coagulation coefficient for magnetic dipole particles

in the presence of an external magnetic field have been derived and applied to

the coagulation of magnetic grains and the formulation of magnetic chains in

magnetic aerosols with an external magnetic field.

.................................................... ....... .' ' "- - .... * " " ' ' . . . . . . "



2. Idealized statistical calculations of chaining in a dilute suspension

of macroscopic magnetic particles in a rarefied gas have been made in the

presence of an external, homogeneous magnetic field. The primary colloidal

particles are assumed to be spherical, of the same size, and have saturated

magnetic moments. The magneto-chemical potentials and the association-

dissociation equations have been derived for chains consisting of v > 1 mag-

netic grains as a function of the temperature T, the density NV of chains,

and the homogeneous magnetic field Bo. High field intensities Bo are

shown to shift the chain length distribution F - F(v) in favor of long chains,

v 3 1, whereas increasing temperatures T move the maximum of this statistical

distribution to smaller chain lengths, v + 1. The theory appears to be in

qualitative agreement with experiments using an external magnetic field for

the alignment of chains and their stabilization.

3. The artificial charging of magnetic aerosols is of interest with

regard to the reduction of the coagulation rate of Coulomb repulsion of the

magnetic particles. For this reason, the interesting properties of charged

particle gases and their fluctuating electric microfields were studied. It is

shown that (i) the collective electric fields act at distances larger than the

characteristic repulsion distance D - (KT/4wne2)1 /2  of like-charged

particles and (ii) the average collective electric field is EW =

(12wnKT) 1/2 for ideal gases of particles of the same charge e. Thus, in a

thermal equilibrium gas of like-charged particles, the longitudinal

microfields are considerably stronger than in a plasma, since in the latter

the random electric fields of the negative and positve charges nearly

.Nr
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compensate each other. In addition, the interrelation between (average)

kinetic, interaction, collective field, and electric self-energies has beerL

calculated for charged particle gases.

4. Finally, an investigation on the reformulation of electromagnetic

theory for space applications was carried through in which the existence of

(i) a preferred frame of reference and (ii) an electromagnetic carrier for the

electromagnetic waves is taken explicitly into account. In view of the exper-

imental discovery of the cosmic microwave background, (i) a preferred frame of

reference and (ii) an electromagnetic substratum can no longer be denied. The

latter work was supported only in part by the AFOSR.

A list of foui papers follows. Two of them have been accepted for publi-

cation, while the others Ve still under review. We ask the AFOSR to accept

reprints of these publications as a final report. These papers are attached

as Appendices A through D, respectively.

I

A. H. E. Wilhelm,-"Dissociation-Association Equilibrium of Magnetic Particle

Chains in Homogeneous Magnetic Fields;" Phys. Fluids (1985).

B. H. E. Wilhelm, "diffusion and Coagulation of Magnetic Dipole Particles in

Inhomogeneous Magnetic Fields;" Phys. Fluids (1985).
r

C. H. E. Wilhelm, "Statistical Distribution of Collective Electric Fields in

Charged Particle Gases;" Int. J. Electron. (1985) - to be published.

D. H. E. Wilhelm, "Covariant Electromagnetic Theory for Inertial Frames with

Substratum Flow," Radio Sct. (1985) - to be published.
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APPENDIX A

DISSOCIATION-ASSOCIATION EQUILIBRIUM OF MAGNETIC PARTICLE CHAINS
IN HOMOGENEOUS MAGNETIC FIELDS

H. E Wilhelm
Michelson Laboratory

Naval Weapons Center, China Lake, CA 93555

ABSRACT

An idealized statistical theory of chaining in a dilute suspension of macroscopic magnetic

particles in a rarefied gas is presented when an external homogeneous magnetic field is present.

The primary colloidal oarticles are assumed to be spherical, of the same size, and to have saturated

magnetic moments. The magneto-chemical potentials and the association-dissociation equations

are derived for chains consisting of v - I magnetic grains, in dependence of the temperature T, the

density N, of chains, and the homogeneous magnetic field B0 . High field intensities B0 are shown

to shift the chain length distribution F = F(v) in favor of long chains, v )> 1, whereas increasing

temperatures T move the maximum of this statistical distribution to smaller chain lengths, v -0, 1.

The theory appears to be in qualitative agreement with oven experiments using an external

magnetic field for the alignment of the chains and their stabilization.
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1. INTRODUCTION

It is known that external electric or magnetic fields shift the molecular dissociation

equilibrium in favor of the paraelectric, respectively, paramagnetic reaction products.1

Statistical considerations show that a homogeneous magnetic field B0 affects the thermal

ionization equilibrium a = i + e of a plasma if the quanta of the oscillatory electron (e)

motion in the B0 field that corresponds classically to the electron gyration are of the order or

larger than the thermal energy, Aw a KT, where (a = eB0/m (e is the charge and m is the

mass of an electron).2 The ionization may be enhanced or depressed depending on whether

the atoms (a) are diamagnetic or paramagnetic. 2 The electron (e-) and positron (e +) densities

of the thermal vacuum equilibrium e + + e. 2 y (gamma quanta) are increased by a

homogeneous magnetic field B0 (in favor of the paramagnetic or spin particles e±).3

Similarly, the electron-hole equilibria in solids are shifted towards higher electron and hole

concentrations by a hotrogeneous magnetic field, in particular in crystal structures with

small effective electron and hole masses. 4 However, these interesting physical effects are in

general quantitatively not very significant since the energy pBo of the magnetic moments p in

the magnetic field is small compared with the thermal energy, pB0 4 KT, except in the case of

suprathermal fields B0 L KT/p, which can be generated through magnetic flux

compression. 5.6

Magnetic field effects on reaction equilibria are quantitatively extremely important if

the reacting species are macroscopic or colloidal particles that have paramagnetic or

ferromagnetic moments p 1 PB, which are large compared with the Bohr magneton PB =

eA/2m = 9.274 X 10" Am". (An analopeous conclusion holds for paraelectric or ferroelectric

macroparticles in electric fields.) For the latter reason, the magnetic dipole energy pB0 may

already be larger than the thermal energy, pBo > KT, for moderate magnetic field strengths

B0, so that the reaction equilibrium is significantly affected by the magnetic field. In

particular, this is true for colloidal suspensions of saturated paramagnetic or ferromagnetic

grains of radius a - I01 m, which associate to long chains consisting of v J> 1 grains in the

presence of an external, homogeneous magnetic field. Dispersons of such colloidal chains of

electrically conducting, ferromagnetic particles (Fe, Co, Ni) in the atmosphere are of technical

interest as wide-band electromagnetic obscurants.

Herein, we analyze the association-dissociation equilibrium of chains a, consisting of

v spherical grains of radius r = a and saturated magnetic moment pi dispersed in dilute,

2



homogeneous carrier gases of temperature T and a homogeneous external magnetic field go.

The corresponding reaction equations are

a a,- +a, * 2 v v (1)

where a, = a and v. < - is the maximum number of grains in a chain. If the grain material

is treated as a single, magnetic domain of magnetization M[A/m], the magnetic moment

[Am"] of a spherical grain of radius r = a is given by

p = 4nn/6a 3 M . (2)

In local magnetic field Bo the potential energy of a grain is U = -p - Bo * 0. The average

moment (p I) of a grain in direction of field Bo is in thermal equilibrium (p I ) = L(pBo/KT)

where L(-ol = cotheo - ro"' - 1, co 0 1, is the Langevin function. Accordingly, (p i ) = p for

pBo 3 KT. The maximum potential energy of the dipoles in the magnetic field Bo (relative to

the thermal energy KT) is by Eq. (2)

E = 4n(n/6)a3 MB/KT = 4.77 x 10a 3MB/T (3

Accordingly, co " lOz for M = l0'/4n A/m, Bo = 1 Vsec/m 2, T = 300K, and a = 10' m. This

example shows that at standard temperatures T, the grains have their moment p aligned

parallel to B, already at moderate field intensities, (p ' = p I B, for c 0 1.

Since the magnetic field of a dipole P, is B, = -V(ppj - r/4nr), the interaction energy

of two magnetic dipoles "'i" amd "j" at a distance r = I r I apart is Lj3 = (Po/4n)r-3[p • pj -

3r-2(p, r)(pj • r) where po = 4n X 10- Vsec/Am. The average distance between grains is on

the order 7 - n" 3 where nim 'I designates their density. Accordingly, the average binary

interaction energy of the dipoles is

= 4npo(n/6)2a6M2 n1KT = 3.14 X 10 17 a6M2n/T (4)

relative to the thermal energy KT. Hence, €- = 6.63 X 10' 4 1 for M = 10/4n A/m, T =

300OK, a = 10' m, and n s 10;" m'. Thus, the grains behave like an ideal gas at T = 300°K

for densities n < 10' m- In the following it will be assumed that the grains and the chains

formed from them behave like a quasi-ideal suspension in the atomic (nonmagnetic) carrier

%t, * ,%J,.J. m J' ) %j., '... t''..'' o . ,",;," t ""%". .."." " . " " -".3.



gas. By Eq. (4) this requires l 4 1, i.e., sufficiently low particle densities n and sufficiently

high system temperatures T (below the Curie point).

Physically more complex is the calculation of the chain lengths equilibrium for

ferromagnetic grains dispersed at highest densities (n - 10' m') in so-called ferromagnetic

fluids.7 For this situation, an asymptotic theory for strongly nonideal interactions was

proposed (which breaks down in the ideal limit). 7 This nonideal theory has been shown to

disagree up to orders of magnitude with the experimental data.8
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II. MAGNETOACTIVE CHAIN EQUILIBRIUM

A homogeneous magnetic field B. aligns the magnetic dipole moments pi of the

grains at and thus provides favorable conditions for the formation of linear particle chains

resembling rather rigid one-dimensional polymers. In thermal equilibrium, the chain

lengths L, or the numbers v = 1, 2, 3,. .., vQ of grains a, in the v-chains have a distribution

F = F(v) determined by the maximum entropy principle. 9 The most elementary dissociation

(--) -association (--) reactions are those in which one grain al is removed or added to a

v-chain from the collective 2 5 v < v.:

av:;-av + aI

aav,_2 +al

(5)

a 3 U a 2 + a,

a2L a, + a1

Adding these relations yields a summary reactin equation, which describes the dissociation of

a v-chain into v grains a1 and the formation of a v-chain by association of v grains al,

respectively:

* a =val ,v=2,3,4, ..., v, (6)

This reaction is of particular interest since it relates the densities N, of the chains v - 2 to

the density N, of grains a,. The distribution Nv of the v-chains observed in experiments is the

one with largest probability and, hence, maximizes the entropy of the colloidal suspension.

The latter condition leads to a statistical equilibrium equation for the summary reaction (6)

in terms of the magneto-chemical potential 0, of the v-chains and the magneto-chemical

potential f0, of the grains a1,

fly = vQ I v=2,3,4,...,v, (7)

The magneto-chemical potentials of the chains % > I and the grains v = I are given for ideal

ccnditions by

I5p.
'*-[ ~ % V~ •S. . .. . .



Q~ KT{In(N A3) + TIK T - In (L V4RU B) (8)
where

AV= h(2nmKT) ,9

UVR = uVu R  (10)
V V V

UB = sinh(pBo/K7)/(pB!K , (11)
are the thermal DeBroglie wavelength of the v-chains of mass m, the product of their

vibrational (V) and rotational (R) partition functions, and the orientational partition

functions of the magnetic moments Pv of the v-chains. Obviously,

2n n (12)
UV = expp.Bo cos 6) sin 0 dO

where 4 = (p., B0 ). The masses m, and moments pv are given in terms of ml and pl,

respectively,

V = vml I p" = vPI (13)

Substitution of Eq. (8) into Eq. (7) yields the fundamental dissociation-association

equations for v-chains in a homogeneous magnetic field B,:

_________ IK 1 PB 3 V- C

N v vR t sih(PB/KT) K 3/2 h3 V00V
V 1 V Pv[sinh(pB/KT)Iv  KT (2nmK I'T)

v 2,3,4..., v (14)

where

~jmj ~2 3 (15)cc " VC -v - v[l.p/4n(2a1 )5

VR "VR /(uVR)v - 1 0 0 (16)

* 6
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The energy Arc, required for the dissociation of a v-chain into v grains is of the magnitude

-A'v - vi0 "  eV. The values of A . can be calculated (v-body problem) or measured

experimentally. Equation (16) holds in view of the macroscopic nature of the particles v - I.

Equation (14) represents v. - 1 equations for the determination of the v. unknown

particle densities NI, N2 , N 3,. . ., N,. A complete system of equations is obtained by adding

the equation for the conservation of the total grain density N,

VM (17)

XvNV = N
v=1

Substitution of Eq. (14) shows that Eq. (17) represents a polynomial of order v. for the

determination of the grain density N,

V= (18)

Y C (B ,T)N = N

where

p- Pvsinh(Pl~nI B ~ -3 ,V- i

W12 VR' 0inhhpB
C(B,Tn v f. - OT 1  Vexp( -

P, (sinh(p =BKiv KT (2nm| KT)nK

V =2,3,4,. ..,v "CI(Bo, 7). a (19)

With NI calculated as the positive root of Eq. (18), the chain densities follow from Eq. (14) as
N, =- C,(iB,, T).N I

In applications, one is mainly concerned with suprathermal magnetic fields for which

BO $ KT/p, : pvBo/KT ., 1 (20)

For such strong magnetic fields, Eq. (19) reduces to the dissociation-association equation

,,, v-- J2 VR[I P IBo h3 I-  " Nc%
N f v fv K T (2nmKT 32 KT)

v 2,3,4, .., v B,>KTip1  (21)

.44 7- *?*** * *~~ ~4 .,. .,:., ., :. "; #*; *;*" :,'." ""." " '-"''""""**:"':':, "., "'" ' ",,- -"4,"."••.. ' "*. , , '* <,,



with

C(B - I vl2 VRj P 1 B 0 h3  Iv - d
V 0Bo T i v  KT (2nmKT)n KT

v=2,3,4,...,v® ;Bo J>KT/p1 , (22)

Equation (21) provides interesting proportional relations that exhibit the main

magnetic field (Bo) and temperature (T) dependences of the chain densities N,:

NwN 2B' T - &2 expi 4 /KT)

N 3 X N3B2T- Ie2 exp(Y3K7)

NcN 4 B3 T - ' exp(A2'KT) , B J> KTIp (23)
4 1 0 4 0

N aNvBv-T5v IV z(6
V 1a 0v

It is seen that an increase of the magnetic field Bo shifts the distribution {NI, N2 .. , N'v} in

favor of the large chains, v - v., whereas an increase in the temperature T shifts the

distribution {Nv} in favor of the short chains, v -+ I.- In view of the exponential T-dependence

in Eq. (23) and At, > Ac,- 1 , a temperature increase has a particularly strong destructive

effect on the long chains.

8



111. CONCLUSIONS

The statistical theory presented should be considered a first step towards the

qualitative understanding of the dissociation-association equilibrium of magnetic colloid

chains in an external, homogeneous magnetic field, presumed that the primary grains formed

originally a sufficiently dilute suspension in a nonmagnetic gas. The favorable effect of the

external magnetic field on the chain formation and the shifting of the chain lengths

distribution Fv) towards larger chain lengths v has been observed experimentally. However,

quantitative experimental data on magnetic chain iengths distributions in aerosols, which

could be used for comparison with the theory, have apparently not yet been published. The

experiments also indicate that chains and grains coagulate to large clusters which "fall out"

in the gravitational field when the magnetic field is switched off. The rapid coagulation in the

absense of a (sufficiently strong) magnetic field can be reduced by spraying the macroscopic

particles with electric charges (Coulomb repulsion). 1o

In order, to achieve a quantitative understanding of the chain equilibrium in an

external magnetic field, several (difficult) problems remain to be solved rigorously. The

dissociation energies Se-v = vrl -Z ., are to be calculated from the v-body problem of a v-chain

made up of extended magnetic dipoles (grains of radius a > 0). Based on this v-body

dynamics, the oscillatory and rotational partition functions of the v-chains have to be

determined (even though these degrees of freedom of macroscopic particles are only poorly

excited at temperatures below the Curie point). Finally, to render the theory applicable to

higher grain densities, the nonideal interactions between chains and grains would have to be

taken into consideration in the evaluation of the statistical chain equilibrium.

In connection with the chaining phenomenon, various other interesting effects could

be investigated theoretically. For example, it would be important to understand the effect of

primary grains that have not the same size but a size distribution. Furthermore, it would be

interesting to evaluate the chain lengths distribution for primary grains that carry an

artificial electric charge. Already these few examples indicate that the research on

magnetically active colloids offer significant opportunities for further contributions. 0

0 .. ..



APPENDIX A: Alternative Derivation

It is instructive to derive the dissociation-association equation f Eq. (10) also from the

reaction

aVU a 1 +-al V v=2,3,4,.. .,va, (A-1)
where

OV= + 0 V=2, 3, 4,...,v % (A-2)

in statistical equilibrium. Substitution of the magneto-chemical potentials f Eq. (8) 1 into Eq.

(A-2) yields (after some alegebra) the "one-grain" dissociation- association equation:

NV = D(Bo,nTN ,N1 , .V =2,3,4,...,Vm, (A-3)

where

D( ~~ VR v32PV... sinh(p.B.IKT)
D(B V = g R(...... P............ 1B /1KT)sinh(pjB I1K T)

xIp 1  B -Iepirh 3  
1CjT 1T 2 ,..,v (A-4)

and

Eq. (A-3) represents a recurrent relation that gives, by elimination, the "v-grain"
dissociation-association equation:

V (A-6)
NV =Nf [ID (B n =T)4..v

v= 2
where

Vi -. 3 V (A-7)
h ~ ~ I V-

D(B, T) G~sinh(pBIK7)F'- 32n 1 2T)3 r2(KT )
and

Gm 3/g (2 ? 2x P sinh~pB IKT) (A-8)

v-2 V- V sinh(p.- 1vB0/K7



since

V

v-2

Factorization of the finite product (A-8) and evaluation of the individual products gives

3C p1  sinh(p ,BI*KT (A-10)

GV =" X x sinh(pBlKT)

since

[I g = (A-i11)
v=2

by Eqs. (A-5) and (16). Combining Eqs. (A-6), (A-7), and (A-9) results in the dissociation-

association equation:

N )=NfVR 31 p I sifh(pVB,/K7n p1B0  h 3  V- CIC

Pv (sinh(p1B IKT)Jv K (2nmKnt2' I KTJ

V =2,3,4 ... vw (A -12)

Equation (A-12) is identical to Eq. (14) derived from the summary reaction [Eq. (6)) and the

statistical equilibrium relation (7) . The derivation of Eq. (14) is apparently simpler than

that of Eq. (A-12). The identity is necessary for physical reasons.

11
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APPENDIX B

DIFFUSION AND COAGULATION OF MAGNETIC DIPOLE PARTICLES
IN INHOMOGENEOUS MAGNETIC FIELDS

H. E. Wilhelm

?ichelson Laboratory

Naval Weapons Center, China Lake, California 93555

ABSTRACT

A theory of the diffusion of macroscopic, magnetic particles (suspended

in gaseous or liquid media) in density and magnetic field gradients is

developed from first principles (Fokker-Planck equation). The influence of

the random, fluctuating magnetic fields, produced collectively by the magnetic

dipole particles in their thermal motions on the diffusing particle, is taken

into account in a self-consistent way. It is shown that the anisotropy in the

particle diffusion, caused by the coupling of translational and rotational

degrees of freedom (Magnus effect), is small in most physical situations. As

an application, the steady-state boundary-value problem for the diffusion of

magnetic grains in the inhomogeneous magnetic field of an adsorbing sink

dipole and an external, homogeneous magnetic field is solved by means of a

stream and Green's functions approach. The coagulation coefficient for

magnetic dipole particles in the presence of an external magnetic field is

derived. The results are discussed with regard to the coagulation of

magnetic grains and the formation of magnetic chains.

4 2'.' , .., ... - + .. -. :.-. :.. . . ... . -,:.-



INTRODUCTION

The physical behavior of colloids formed from ferromagnetic grains

suspended in magnetically inactive liquids has recently been investigated

experimentally1 ,2 and theoretically. 3,4 Under the influence of a uniform

external magnetic field, the magnetic grains tend to associate in the form of

long chains if the grain density and the temperature of the liquid are

sufficiently low. 5,6

Based on the Fokker-Planck equation, we develop an analytical theory of

the thermal diffusion of magnetic dipole particles in magnetically passive

fluids F (gases or liquids) when an inhomogeneous magnetic field 37,t) is

present. A novel diffusion equation is derived and applied to the diffusion

of magnetic grains in the inhomogeneous field Bs(r) of an "absorbing"

magnetic dipole when a homogeneous external field Bo is present. The

corresponding boundary-value problem is solved analytically. The coagulation

of dipole particles, which interact through their magnetic self-field, is

discussed in dependence of the external field Bo.

Ferromagnetic grains have a typical radius a 10- 8 a. If the grain

material is treated as a single magnetic domain of magnetization M[A/m], the

magnetic ioment [AM21 of a spherical grain of radius r - a is given by

Let these grains be dispersed in a nonmagnetic (uo) carrier medium (F) of

temperature T. In a local magnetic field B, the potential energy of a grain

is u - o . (2)

---



The average moment <p,4> of a grain in direction of field B is in* thermal

equilibrium

<p > - L()p, e pB/KT (3)

where
L(e) - cothe - e- 1  1, C 3 1 (4)

is the Langevin function. Accordingly, <pq> - p for pB > KT. The maximum

potential energy of the dipoles in field T (relative to the thermal energy KT)

is by Eq. (1)

c - 4w(w/6)a 3MB/KT - 4.77 x 1023 a 3MB/T . (5)

Accordingly, C - 102 for M - 106/4w A/m, B - I Vsec/m 2, T - 300°K, and a =

10- 8 a. This example shows that at standard temperatures T, the grains have

their moment 7 aligned parallel to T already at moderate intensities, <p> =

jI Efor c) 1.

Since the magnetic field of a dipole -i is i = -V(uopi "W/4wr 3),

the interaction energy of two dipoles "i" and "J" at a distance r = apart

is (Mo - 4w x 10- 7 Vsec/A)

Uij - (o/4w)r- 3 1i' - 3r 2 (+i.+)(j.')I • (6)

The average distance between the dipoles is of the order - n1/3 where

nfu-3 ] designates their density. The average binary interaction energy of the

dipoles is by Eq. (6) of the order

eij - 4wuo(w/6)2a6M 2n/KT - 3.14 x 1017a6M2n/T (7)

relative to the thermal energy KT. Hence, cij - 6.63 x 10-3 ( 1 for M -

106/4w A/m, T - 3001C, a - 10- 8 m, and n < 1021 m"3. Thus, the grains behave

-2-



like an ideal gas at T = 300*K for densities n < 1021 m- 3 . The maxi=r binaur-

interaction energy of the dipoles is (r - 2a)

A3/

cjj - uow(iT/6) 2M 2a3/Kr - 7.84 x 1016M2 a 3 /T (8)

by Eq. (6). Accordingly, Ctj 100 for M - 10 6 /41 A/m, T - 300*K, and a -

10- 8 m. Therefore, under typical conditions, some of the grains will always

coagulate as a result of their dipole attraction.

These numerical illustrations indicate that the grains coagulate in their

attracting inhomogeneous dipole fields -Bs to larger macroparticles, in

particular at low temperatures. In homogeneous external fields of moderate

intensity, Bo < 1 Vsec/m 2 , the coagulation leads to long chains consisting

of up to 106 grains which are aligned parallel to o. In thermal

equilibrium, the chain length distribution is determined by the respective

temperature T and grain density n.

-3-
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KINETIC EQUATION

The diffusion of macroscopic ferromagnetic grains. of radius a, mass -m,

moment of inertia I, angular momentum L, and magnetic moment p in a

nonmagnetic carrier medium F (gas or liquid), and an inhomogeneous magnetic

field T represents, in general, a physically complex problem. The main

complications are (i) the coupling of translational (-v) and angular (74)

velocities of each grain (Magnus effect) and (ii) the precession of the

magnetic moment - about the local magnetic field B in case of incomplete

alignment. The dynamical variables L, w, and p of a grain are interrelated by

L W , p = yL (9)

where

dt/dt p 9 , dp/dt y- Y+i))

determine the precession of L and p in B. The gyromagnetic factor is y =

pog/h (g - Landd ratio, po = ef4/ 2me - Bohr magnetron), since the ferro-

magnetism of the grains is due to their electrons. The precession of L and p

about the direction of B occurs with the modified Larmor frequency7

'L -'B, 'B  egB/Zm e > 0 • (1)

In view of Eq. (9), L, p, and w are equivalent dynamical, variables for

any grain. The distribution function of the translational - and angular

velocities of the grains is, therefore, at any point (ir,t) of the form

f - f( ,t.,,) (12)

vhe re
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7- "T - 'j W 7 -

+mD+w += +C ++
n- r r f d3v d 3, n<v> - r " vf d3v d3w, ... (13)

-40 -e -m -O

are the macroscopic moments (grain density n, grain flux n<v>, ... ) of

f(r,t,7,w). Changes of the distribution function are brought about by the

force of the inhomogeneous-I field on the magnetic moment -, the translational

friction force (relaxation time TI), the Magnus force, and the friction torque

(relaxation time T2) on the grains:

p (16)- .M+/T  (15)

fc =-'<'ma+ < (16)

6f - - 'T2; (17)

The equivalent fluid mass of the grain volume is ma 4a3nFmF/3.

The Magnus force [Eq. (16)] couples the translational and angular Imotions

of each grain such that a grain rolls aside if V is not parallel to .9

The dimensionless correlation integral of --c is of the order 9 K(K) -- 100.

The frictional relaxation frequencies of V and are in the free molecular

region I 0 K - A.F/a >1:

t-1 - (8/3)a 2n (2wFKT)"I2(l + ct1w/8)/m , (18)
1

-1 - (32/9)a nF(2WmFKT)1/2(l + c'2'/8)/ (19)
T2-5
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where 0 < 1,2 < I are accommodation coefficients 10  
( F = mass, nF.

density of carrier fluid). tn gases with a m.f.p. X F ~ 10- 7. m, the

Knudsen number is K- 101 for grains with radii a -- 10-8 m. The corresponding

Stokes formulae10 (nF = viscosity of carrier fluid) hold in the continuum

region, K- XF/a < I:

T-  = 6wnFa/m ,  T- 1 = 8nrn a3/ . (20)

S2 F

For obvious physical reasons, the distribution function f(rt,-tV) of the

grains satisfies a continuity equation in the {t,-,v--1 space. Consideration

of the forces (14)-(06) and the torque (17) on the balance of grains which

leave and enter the volume element dV - d 3i-d3V-d 3 iat the point (-,- ,-) in

the time dt * 0, yields the fundamental kinetic equation for the distribution

function f(tV,):

v+ (f) + - f) + • ) -

at ar av a

*Ma. af a K 3 + KT a
c Wv,,XW) + 1 T - vT)-Mf + -(w+ -)fJ, (21)

where

4 . +a+.; 4. 4
B a UoH + uo f f pfd 3v d3w, B - 0 (22)

* 4. 4.

H - -7, V x H -0 , (23)

and

724 .7- p f d3v d3w .(24)
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The Fokker-Planck equation (21) and the Poisson equation (24) represent a

system of integro-differential equations for the determination 'of the

distribution function f(,t,,-) and the potential f('-,t) of the

self-consistent magnetic field -H(,t), which has its sources in the

distributed dipoles . The angular acceleration -i is defined by Eq. (10).

Equations (10), (22), and (23) are auxiliary equations, assuming the absence

of electric currents (V x H -0).

In Eq. (21) the interaction terms with coefficients K, T- , and T2 are

responsible for the relaxation of f. In an external magnetic field Bo, the

thermal equilibrium distribution is given by (p - yI')

1 2 1 2
fo Co(no, To, Bo) exp[-( my + -j Iw2 - p.Bo)/KTI (25)

if the nonideal-field effects due to the dipole interactions are neglected

(Co  - normalization constant). By Eq. (25), the average energies of

translation and rotation are in thermal equilibrium To

< +2/2> - 3KTo/2, <+ 2/2> - 3KToI2 . (26)

For vanishing interactions of the grains with the carrier medium,

T, -, the relaxation terms in Eq. (21) are absent. In this case,

Eq. (21) has elementary, stationary (3/3t 0) solutions of the form

f R(C), C -j 1 2 + iw -W f.( .B dr ,(27)

r

since
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-H'(e)p'.VB, af5/av = H'(e)mv , (26;

3-ws/w- H'(e)I(w+ - Y9) 'W - 0 ,(29)

where W-w xi T is perpendicul'ar to (7- yB) by Eq. (10). In Eq. (27), H(e)

is an arbitrary functional of E and H'(e) =-dH(E)/de. The Magnus terrm in

Eq. (21) vanishes since 3f./a37 1 V

In general, nonequilibrium solutions of Eq. (21) are obtainable by means

of perturbation theory. The latter assumes f - f+i for 0 < T1/ 2 <

with II(fo. It should be noted that the kinetic equation (21) implies

that the grain component behaves like an ideal gas with an equation of state

p -nKT.



DIFFUSION EQUATION

In Eq. (21), the Magnus force term causes grains with- 17to diffuse

somewhat slower than those with 7 'I As a result, the translational (v) and

rotational (-) velocities are coupled, and the diffusion of grains becomes

anisotropic. As known from the theory of the Senftleben effect 1 1- 14 for

molecules (with mechanical spin and magnetic moment) in a homogeneous magnetic

field, the anisotropy of the, diffusion coefficent decreases with increasing

particle size.

Nondimensionalization of Eq. (21) indicates that the strength of the

coupling of the translational (G) and rotational (-) motions by the Magnus

force - v x 7 is determined by the relaxation frequency

• !  2/)1/2 (ma/m)(3KT/1) 1/2
1 K(2/3)/ (30)

where wT - (3KT/l) 1/2 is the thermal frequency of rotation, and I - 3ma2/5

for spherical grains. Accordingly, one expects the diffusion anisotropies to

be insignificant for coupling frequencies TC- 1 which are small in comparison

with the translational relaxation frequency T-1,

The diffusion equation for the grains -follows from their continuity and

motion equations in the carrier medium. The moments of the kinetic Eq. (21)

for the corresponding dynamical variables (sW)o and (m-)1 are

an/3t + V-(n <v>) - 0 , (31)

a(nm<v>)/3t + V.(nm<v><v>) - -V(nKT) + n<p>.V - rj 1 nm(<v> - <vF>) (32)

for

ti1 < Ti-l(1 + T2 "/Tl-l)
1/ 2 

- r1 I, T2
- 1 < t 1 - 1  (33)
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Equation (33) is the condition for the quasi-isotropic diffusior,

approximation. 14 The sources for the momentum changes of the grains are the

pressure gradient, the magnetic dipole force density, and the intercomponent

friction force density between the grains and the carrier medium (F) with mean

mass velocities < and <v F>, respectively.

The magnetic dipole force density in Eq. (32) results from Eq. (21), in

accordance with the partial integration

f f v a.((p.VB)fi/3v d3v d3w r f pVB d3v d3w - n<p>.VB (34)
-M -40 -i -go

for particles with magnetic moment " - yI, and f - exp(-mv2/KT) + 0 for

For diffusive or slow shock-free motions of the grains, the nonlinear

inertia term V.(nm<v_<V) in Eq. (32) is neligible. In this approximation,

elimination of n<v> from Eqs. (31) and (32) yields the "hyperbolic" diffusion

equation for the grain density field n(-,t) in isothermal carrier media (T):

32n/at 2 + TV1 an/at + T1 V.(n<+ >).- c2V.fVn - n(<>.Vi)/KT] (35)

le T

where

cT - (KT/m)1/2  (36)

is the thermal speed of the grains of mass a. Equation (35) represents a wave

equation which propagates density perturbations n(r,t) with a characteristic

speed cT and relaxation time T1.

In applications usually only large observation times are of interest,

t 3 T1. In this case, Eq. (35) can be reduced to the "parabolic" diffusion

equation for grains in isothermal carrier media (T):

-10-



an/at + V.(n<vF>).- DV.[Vn - n(<p>.VB)/KTI (31;

where

. TICT2 - (KT/m)T 1  (38)

is the diffusion coefficient in the quasi-isotropic approximation (33).

Equation (37) propagates density perturbations with infinite maximum speed,

since CT2 + - for T, + 0 by Eq. (38).15

in Eqs. (35) and (37), 7.(nFv>) considers the convection of grains by

the flow r.> of the carrier medium (F). The self-consistent magnetic
F

field B in these hyperbolic and parabolic diffusion equations is described by

B - poll + uon<p>, V.B - 0, (39)

+ +.

H V4, V x -O, (40)

V2. - 7.(n<p>), (41)

where

d<p>/dt - y<p> x B (42)

Equations (39)-(42) are the macroscopic (average) versions of Eqs. (22)-(24)

and Eq. (10), respectively.

The presented diffusion theory for magnetic grains suspended In gaseous

or liquid media (F) is applicable in the isotropic diffusion approximation

(33), which requires that

TZI/T- - (mF/m)1/2 (Z 1, K 31 1, (43)

t I/Tj 1 -- (nFMF/nF)(KT/m)1/2a < 1, K C 1, (44)

°3- - r . - - l -. - l - -. . - - * - - -. ..-. - - . - - . .- - . ... . ... .



in the free molecular and continuum flow regions, respectively. For K >> ,

the isotropy condition is satisfied since mF < m for macroscopic grains

(a ) 10- 10 m ) of mass m = (4wa3/3)p (solid-state density p > I03 kg/m 3). For

K < 1, the istropy condition is satisfied for dense gases, and also for

typical liquids (nFmF - 103 kg/m 3, nr. -10 - 3 kg/msec, T - 300°K) for

which TC-I/T1-1 10-6/a1 / 2 <( I for a > 10- 10 m.

4

4
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BOUNDARY-VALUE PROBLEM

In the classical theory of Smoluchowski, 16 nonch.arged and nonmagnetic

colloidal particles of radii a and b a are shown to coagulate upon

approaching their critical interaction sphere of radius d - a + b by Brownian

motion. When the grains are surrounded by a layer of solvent, the contact

distance d is not exactly the sum of the grain radii a and b. If the

macroscopic particles have a magnetic moment, the coagulation process is

considerably enhanced by the drift motion of one dipole T. in the

attractive, inhomogeneous magnetic field TS of the other dipole To.

Experiments indicate that an external, homogeneous magnetic field Bo directs

the agglomeration of particles into conglomerates of the form of long chains

parallel to T. 5,6

In order to provide an understanding of the coagulation of ferromagnetic

grains in dilute suspension, the boundary-value problem for the spatial

distribution n(r) of similar "field" dipoles -. of radius r * a in the

magnetic field T(r) of a fixed "sink" dipole TB of radius r = b shall be

analyzed, when a homogeneous magnetic field Bo is present. The latter is

assumed to be parallel to the z-axis (Fig. 1) and Is in spherical coordinates

(r,e,#) given by

Bo a Bo (cose, - sine, 01 . (45)

The sink dipole To is taken to be at the origin T-0 and is to be aligned

with-Bo (Fig. 1), so that in spherical coordinates

po - p fcose, - sine, 01 (46)
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The magnetic field B -7(u --/4 r 3) of the sink dipole V.

is by Eq. (46)

BS  r r 3{2cose, sine, 0}, As = UoP/ . (47)

The intensity of the total magnetic field () - + i () at the

position T from the origin (Fig. 1) is then

B(r,e) - [B2 + 2B A r'3(3cos 2e - 1)
0 08

+ (A r-3)2(3cos2o + 1)11/2, d < r < - (48)

For saturated, ferromagnetic grains with quasi-instantaneous alignment 12 in

the local magnetic field W-, the magnetic dipole force is derivable from the

potentital1 -OB" '

+ + p
P* " VB - V(pa.B) , pa - pa BB (49)

For isothermal systems, it is convenient to introduce the dimensionless

potential

(r,e)- [p,(r,e) - p3BoJ/KT (50)

with

*(r,e) 0 0, r *, 0 < e < , (51)

pa*VB/KT a * (52)

The carrier medium in which the magnetic grains are suspended Is assumed

to be at rest, <v;,> -0. According to Eqs. (37), (50), and (52), the

distribution n(r,e) of field dipoles T. in the surrounding d < r < - of the

sink dipole T. (Fig. 1), as modified by thermal diffusion agn, magnetic

field drift aV*, and coagulation at the contact sphere r - d - a + b is, in

the stationary state, determined by the elliptic boundary-value problem:

5-14-



V.(Vn0- nVj) 0, d < r < -, (53)

n(r a d,e) - 0, 0 < e < , (54)

n(r a -,e) a no, 0 ( e < , (55)

where n - n(r,9) due to azimuthal ( ) symmetry, and no is the grain density

at large distances r 0 d from the sink dipole v. For (r,G) - 0,

Eqs. (53)-(55) reduce to Smoluchowski's boundary-value problem, 16 which has

the simple solution n(r,0) - no(I - d/r).

The magnetic field drift term -74 and the complex r,S-dependence (48) of

the potential function *(r,e) render the boundary-value problem (53)-(55)

nontrivial. The ansatz

n(r,O) - N(rO)e4(r.e) (56)

reduces Eq. (53) to the Laplace equation with a variable coefficient exp(*),

V.(eN) - 0 . (57)

The first integral of Eq. (57) is proportional to the grain flux T -

-D exp(*)VN - -D(Vn - nV ). Hence,

e*VN - f(3S/3e)/r 2sine, -(OS/3r)/rsine, 01 . (58)

can be derived from a stream function S - S(r,O) so that V.J- 0 and Eq. (57)

is satisfied. Equation (58) yields

-15-
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~ N -r 2 sine ( r ae - ae(59

The right side of Eq. (59) suggests that the stream function is of the form

S(r,e) - 0(r,9)e *(r) e ) (60)

which eliminates the variable coefficient exp(-*) from Eq. (59),

V2N = - r2 ine ( -a i an (61)

In order to homogenize both boundary conditions (54) and (55), N(r,e) is

decomposed as

N(r,O) - no(l - d/r) + g(r,e) . (62)

By Eqs. (53)-(55), (56), (61), and (62), the function g(r,e) is determined by

the boundary-value problem for a Poisson equation with homogeneous boundary

conditions:

v2g -Q(r,O), d < r <, (63)

g(r - d,e) - 0, 0 < e w, (64)

g(r - -,e) -0, 0 < <, (65)

where

Q(r,e) -- r2sin8 ( "e -er) (66)

In the field-free case, the stream function is S(r,e) = - nodcosO for

#(r,e) 0 0. Hence, for #(r,e) * 0,

*(r,8)
S(r,S) - nod e coso, fl(r,e) - nodcose, (67)

and

-16-
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Q~rn 0 dr-2 a~~~)~ 6.)

with r 2 Q(r,@) -- nodaV(r,9)/ar + 0 for r *-by Eqs. (48) and (50).

For the region outside of the interaction sphere, d < r < -, the Green's

function of Eq. (63) and the homogeneous boundary conditions (64) and (65) is:

G(r,S;r',O') u-[R-' - (dir') R;1 1/4w ,(69)

where

R(r,e;r',e') - (r2 -2rrtcoS(e-et)+rv2]1/2 (70)

R 0(r,e;r',e') - [(d 2/r' )2 - 2(d2 /r')rcos(6-e9)+r21/2

* with

R-1 -,(d/r')R-1 for r - d, R - 0 for r' - r, 8' - 8 (71)
0

The coordinates of the field and source points are designated by (r,e) and

(r',e'), respectively. The Green's function (69) has the properties

G -- for r'-r, 8'-9; G - 0 for r-d, 0:50:5w; G - 0 for r--, 0:50:57 .(72)

* The solution of Eqs. (63)-(65) is, in terms of the known functions

G(r,O;r',S') and Q(r,8),

g(r,e) -JQ(r',e')G(r,e;r',e')2vr'' sine'dr'de' (73)
dO0

Thus, we obtain from Eqs. (56), (62), and (69) the following analytical

solution for the spatial distribution n(r,O) of the field dipoles V. in the

*superimposed magnetic field 1 8 (r,e) of the sink dipole -FO and the

external, homogeneous field Bo:

*(r,O)
n(roe) - (n 0(I-dfr)+ f fQ(r',')G(r,e;r',e')2wr'sin'dr'de'Je .(74)

0~ d0
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This result shows that the distribution n(r,9) of ferromagnetic grains Is

composed of the field-free solution multiplied by the Boltzmann factor,

no (1-d/r)exp(4,), and a source solution, g(r,6)exp(), which vanishes at both

boundaries r - d and r

The current density j - -D(7n - nvq) of the magnetic grains a streaming

to the interaction sphere r d around the sink dipole B is by Eq. (74),

J(r,e) - -Dn odr- 2 er +7 . r Q(r',O')G(r,;r',')2r'2sine'dr'dO' e ') (75)
d 0

As an illustration, Figs. 2, 3, and 4 exhibit the dimensionless grain

density N(o,e) - n(r,e)/no versus the dimensionless distance 0 - r/d > I

(from the source dipole B) for the angles 0 - 0; w/4 ; w/2, with Eo -
A

PaBo/KT - I and e - paBB/KT - 0.1; 1; 10 as interaction parameters

(8 - uopg/4wd 3 )" It is seen that the field dipoles a are distributed

anisotropically around the source dipole B, caused by its magnetic self-field

10(r,e) and the external (homogenous) magnetic field B0, where N(0,O) >

_N(p,w/4) > N(P, w/2). This anisotrophy effect increases strongly with

increasing e a B (Figs. 2, 3, 4), but increases only slightly with

increasing co a Bo in the interval 0.1 < co < 10 (for the latter reason,

only c o , - I shown).

Comparison of Fig. 4 with Figs. 2 and 3 indicates that the magnetic grain

distribution N(O,O) changes qualitatively for large interaction parameters e >

10. The distributions N(p,e) in Figs. 2 and 3 are of the "diffusion type,"

whereas the distribution N(O,O) in Fig. 4 is controlled by the (a-B) dipole-

dipole interaction. Since for e > 10 the energy paB8 of the field dipoles

a in the magnetic field -s of the source dipole B is much larger than the

thermal energy KT, a large amassment of field dipoles a results in front of



the reference dipole 8 (Fig. 4). In view of the binary tntieractica

approximation, Fig. 4 is strictly applicable only to absolute a-dipole

densities n(r,8) for which the average binary (a-c') interaction parameter

Co' is small [Eq. (7)].

In view of these observations, it is to be expected that the coagulation

rate yaB of grains with magnetic moments pa and -B depends (i) strongly

on the magnetic dipole-dipole interaction paramters e and (ii) on the

interaction parameter co -of the dipoles with the external magnetic field

Bo. In the presence of a strong Bo-field the coagulation rate y. would

obviously decrease with increasing e - UopapB/41d 3KT so that grains with

large magnetic moments p. and pS coagulate at a slower rate than grains

with smaller magnetic moments (in agreement with experiments).
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COAGULATION IN MAGNETIC FIELD

The local density nao of particles (grains, .chains) with magneEtic

moment p. decreases due to coagulation with particles of magnetic moment

pS and local density n~o in accordance with the rate equation 16

9n /;t - Y ,Bn n (76)no - a" inonBo"
B

The summation extends over all particle components a 0 a including 3 = a.

Equation (76) defines the binary coagulation coefficients y.8 [m
3 /sec].

For the analytical calculation of the coagulation coefficients y.8 use

is made of the numerical result that the spatial distribution na(r,8) of

a-dipoles around a B-dipole is given, in good approximation, by Boltzmann

statistics as (dUB - contact sphere radius for a-B coagulation)

n (r,e) n o(1 - d a/r) exp[*aB(r,e)1 (77)

where

p3 p B r3 I r3

, (r,e) - - + -"--(i ) [I + 3(2 -r + 13 - j-2 cos29] 112  (78)as KT KT r3  r3  r3

and

(A /B )113 _ (uP 8/4wB )1/3 (79)

Equation (77) follows from the complete solution (74) by neglection of the

g(r,e) contribution (78) with vanishing boundary conditions [Eqs. (63)-(66)].

In this approximation, the flux 4aB - 2Wf Jr,QBr2 sined8 of a-dipoles
0

to the B-dipole is
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Sas(r) - a 2wnao da r' exprtb (r,8)j sine d6 (80)"
0

since the a-dipole current density is ja - Da(Vna - naVtaB)

- DanaodaBr - 2 exp(baS)er by Eq. (77). The number of a-dipoles which

reach, per unit time, the contact sphere r - daB of one 8-dipole is

n - C ast a(r d ) C 8  I, a < 8; C a 2, a =R. (81)caoiBaca, CcaB , q.(t

C.B is on accommodation coefficient, which considers that not only the

a-dipole but also the fq-dipole is in thermal motion.16 Equations (80) and

(81) yield for the coagulation coefficient in an external (homogeneous)

magnetic field the formula:

p BI( (2p3 +1)"-xp( - exp f a t - p3)fl+3 c a2]/21do (82)
0 (3 -1)(

where

pas = d /r, M (4rd3 B /1 p )1/3 (83)
cas as 0 0 8

and a - cose. For the practical evaluation of the integral in Eq. (82) it is

noted that the dimensionless parameter p.8 3 is very large even for moderate

external Bo-fields, e.g., p0 10 for daB 10-m, P8  101 8 Am2 ,

and Bo I 1 Vsec/m 2. Accordingly,

PB -ipB n
-d D -i 1  + ."(- ) (_0) p 0 3 > 1, (84)80 (1 +X a 1.3 ... (2n+l) aspY "KT3  n-l KTpa3

or

UoP aPB (-6)n UoPaPS)n
YS CIO 4 C d D Q exp(-4 3d T ) [; 1 + 1.3...(2n+1) 3

ca a a a 47vd a KT n-I 4wd a KT

Bo> Uop/4wd 3  (85)
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Although Eq. (82) predicts a B0-dependence in general, the coagulation

coefficient YaS is no longer 8o-dependent in the limit of laige

Bo-fields, Pal
3  I or Bo > uop 8 /4irda

3. Equation (85) shows that

yaB decreases exponentially with increasing ratio of dipole interaction

energy jopap8/4 wdaB 3  to thermal energy KT. Hence, grains or chains

with large dipole moments coagulate slower than those with small dipole

moments, in the presence of a strong external magnetic field Bo (Eq. (85)].

In the absence of an external magnetic field, Bo = 0, we have paB = 0

by Eq. (83). In this case, Eq. (82) gives for the coagulation coefficient

S4CdD fexp PB  + 3o2)1/2]d , B= 0 (86)
S4fd T 0

Since 0 < 302 <' 3 for 0 < o < 1, the integral in Eq. (86) can no longer be

approximated by a rapidly converging series. For particles without dipole

interactions (rigid spheres), 0, B - 0, Eq. (86) reduces to Smoluchowski's

formula Y = 4wCaodaBDa.16

The integral functional in Eq. (86) indicates that the coagulation rate

"YaB increases essentially exponentially with increasing ratio of dipole

interaction energy uopapB/4wdaB3 to thermal energy KT, if an external

magnetic field is not present. Thus, in the case Bo - 0, yaB is larger

than in the presence of a strong external magnetic field, Bo  >>

UopB/41dMB3. In the latter case, y.8 decreases exponentially with the

same energy ratio [Eq. (85)).

The stabilizing effect of an external magnetic field Bo concerning the

decay of a magnetic aerosol by coagulation is experimentally established. In

particular, homogeneous magnetic fields 80 > 10-2 Vsec/m are applied to the

chambers of ovens for the generation of ferromagnetic aerosols, in order to

-22-
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reduce the coagulation rate and to align the ferromagnetic colloid chains. By

Eq. (76) the relaxation time T~c for coagulative decay of the' density

njo of dipole particles with magnetic moment p. is

= .,f(/yC~

T /T  )- T = •/yn (87)

Another method of reducing the decay rate of ferromagnetic aerosols is to

spray the ferromagnetic particles with electric charges. The resulting

Couloumb repulsion of the magnetic particles effectively reduces coagulation

as has been demonstrated experimentally.
1 7

The presented theory should be considered as a first step towards a

quantitative understanding of the coagulation of magnetic aerosols in external

magnetic fields.' At higher aerosol densities, many - dipole interactions have

to be considered (in addition to the binary dipole interactions) in the

analysis of the coagulation coefficients. In principle, this can be

accomplished by means of the kinetic equations (21)-(24) or the corresponding

macroscopic transport equations (37)-(42), with self-consistent magnetic

dipole interactions.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Air Force Office of

Scientific Research.

I

-23-

- #* 4. - V............. . .'* p . ',¢ ",'?. ' , "\..)., *,, "Yj- ..



REFERENCES

1. A. Martinet, Rheol. Acta 13, 260 (1974).

2. C. F. Hayes and S. R. .Hwang, J. Colloid Interface Sci. 60, 443 (1977).

3. P. G. DeGennes and P. Pincus, Phys. Kondens. Materie 11, 189 (1970).

4. P. C. Jordan, Mol. Phys. 25, 961 (1973).

5. D. A. Krueger, J. Colloid Interface Sci. 70, 558 (1979).

6. W. H. Liao and D. A. Krueger, .J. Colloid Interface Sci. 70, 564 (1979).

7. R. Becker and F. Sauter, Electrodynamik der Materie (B. G. Teubner,

Stuttgart, 1969).

8. A. Magnus, Ann. Phys. 88, 1 (1853).

9. S. Hess, Z. Naturforsch. 23a, 1095 (1968).

10. G. M. HidX and J. R. Brock, The Dynamics of Aerocolloidal Systems

(Pergamon, gew York, 1970).

11. F. Zernike and C. van Lier, Physica 6, 961 (1939).

12. Yu. Kagan and L. Marksimov, Soy. Phys.-JETP 14, 604 (1962).

13. Yu. Kagan and A. M. Afanasev, Soy. Phys.-JETP 14, 1096 (1962).

14. S. Hess, Z. Naturforsch. 23a, 597 (1968).

k5M .. Luilhelm and T. J van der Werff, J. Chem. Phys. 67, 3382 (1977).

16..M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1917).

17..'R. Brock, private communication, 18 June 1985.

-24-
-4€

d ", . ., ' '" , - . . ; 3" ","';'. ';''", -G -. ". -. - ' ' . "



7r, 2

FIG I: Fied dpol ~ in the magnetic field 'B(r,O) of a source dipole

pand a homogeneous magnetic field Bo.



08

06

v/2,~- 1~ 1,an c .1

02

FIG. 2: Dimensionless grain densityN(p,e) versus p - r/d > I for 8 0; w/4 ;

wr/2, co 1, and c - 01.
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FIGURE CAPTIONS

FIG. 1: Field dipole Pa in the magnetic field B(r,e) of a source dipole

pB and a homogeneous magnetic field Bo .

FIG. 2: Dimensionless grain densityN(p,e) versus p = r/d > I for e - 0; r/ 4 ;

w/2, eo  1, and e = 0.1.

FIG. 3: Dimensionless grain density N(P,e) versus p - r/d > I for 8 - 0; w/4 ;

w/2, co w 1, and e - 1.

FIG. 4: Dimensipnless grain density N(p,8) versus p - r/d > I for 8 - 0; w/4 ;

w/2, eo - 1, and e - 10.
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APPENDIX C

STATISTICAL DISTRIBUTION OF RANDOM ELECTRIC FIELDS IN CHARGED PARTICLE GASES

H.E. Wilhelm

Michelson Laboratory, Naval Weapons Center, China Lake, CA 93555

ABSTRACT

The temperature (T) and density (n) dependent probability

distribution W = W(E;T,n) of the collective electric fields E in an

ideal gas of charged particles each carrying the same charge e (electrons:

=- e < o; ions: e-ze 0 Z 0) is calculated from first principles of stati-

stical mechanics. It is shown that (i) the collective electric fields

act at distances larger than the characteristic repulsion distance D -

(KT/4nne2)1 /2 of like charged particles, and (ii) the average collective

electric field is Ew - (12wnKT) 1/2 for ideal gases of particles of the

same charge e. Thus, in a thermal equilibrium gas of like charged par-

ticles, the longitudinal microfields are considerably stronger than in a

quasi-neutral plasma, since in the latter the random field effects of the

negative electrons and positive ions nearly compensate each other. Finally,

the interrelation between (average) kinetic, interaction, collective field,

and electric self energies is discussed for charged particle gases.

I,i ' " ,ll ll'ilt, : , L .: . .: , , . :: ; : ,
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NTRODUCTION

The probability distribution of the stochastic electric fields E

produced by charges e 5 0 of one kind in random thermal motion is of

considerable interest since one-component charged particle gases such as

electron or ion gases are employed in many technical applications of physi-

cal electronics (von Ollendorff 1957). In a macroscopically homogeneous

charged particle gas of density n and temperature T, collective particle

interactions occur at distances r > D, since the minimum wave length of the

random, thermally excited longitudinal charge waves is of the order X - Dm

of the characteristic repulsion distance for particles with the same charge e,

D - (KT/4ne2 ) 1 / 2  . (1)

By means of Poisson's equation, the random collective field amplitudes Ei in

an arbitrary direction "i" can be estimated from the random particle density n as

Ei/D - ±41ren . (2)

Equation (1) and (2) show that an equiparticLon between random collective

field and thermal energies exists on the average in a gas of like charges,

<E /8w> - nKT/2 . (3)

A rigorous derivation of Eq. (3) based on the Markov method has been given by

Mints (1957) for a gas of electrons in thermal equilibrium.

By the fundamental axiom of statistical mechanics of ideal systems in

thermal equilibrium, all equilibrium distributions can be derived without

consideration of the interactions which bring about the equilibrium (Tolman

1938). By extending this principle for many-particle systems with discrete

energies to continuous media with random energy densities u - E(r,t) /8r,
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we derive the probability distribution W(E) of the collective electric fields
-). -4.

E(r,t) in charged particle gases. These are assumed to be "ideal", i.e., the

Coulomb repulsion energy e2 /r is assumed to be small compared with the

thermal energy KT,

y = e2 n 1 3/Kr = 1.670xO- 3Z2nl/3T -I << 1 . (4)

Among the results reported, it is shown that the longitudinal microfields

in gases of like charged particles are much larger than those of quasi-neutral

plasmas, in which the random electric fields of the negative electrons and

positive ions nearly compensate each other.

4

0 •
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PROBABILITY DISTRIBUTION

Subject of the considerations is a homogeneous gas of volume Q containing n

charges e per unit volume. In thermal equilibrium, the kinetic energy density

of the charges of mass m and velocities _"is given by
<V11

< U21 v  -nfZKT Nn . (5)

During the random thermal motions of the charged particles, a continuous trans-

formation of kinetic particle energy into potential electric energy occurs, and

vice versa, due to the particle interactiond through their longitudinal Coulomb

fields (transverse electromagnetic interactions are negligible for mc2 >> KT).

As has been shown first by Mints (1957),,equipartition of average random electric

and kinetic energies exists in statistical equilibrium (for a thermodynamic deri-

vation, see Eq. (46)] of a gas of particles with the same charge,

3

A12 /8n> > - nKT (6)
2

The electric field '(r,t) produced collectively by the charges at any point

r c n and the field energy density u - 1(r,t)2/8w fluctuate with time t about the

average values <f - 8 and <12/8w> 0 0, respectively. The proposed problem is to

derive the probability W(E)dAE for finding the collective field fluctuation E in

the volume element d-1 - dExdE ydEz about the point I - (E x,E y,E z) of the field

space subject to the thermal equilibrium conditions (5) and (6).

In order to determine experimentally the collective microfield distribution

W(1) . W(12/8w) in a homogeneous and isotropic gas of charged particles, one would

have to measure the fluctuating field I or the fluctuating energy density E2/8w in

the vicinity a r of a fixed field point rEQ at consecutive times t. a \vO

.%.4
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V l,2,3,...N,within experimental errors At << , where 0 is a time interval

which is large compared with the correlation time of the stochastic field so that
, + )> a 0 (within these limitations, the magnitude of 0 may be

changed from one measurement v to the next v + 1). In a large number of such

measurements, N * ,the energy density E 1/8ff would be observed N 1times, ..

011
2the energy density t2/8w would be observed N times, etc., where 2/ means an

experimental value measured with an error (t2/8w). The resulting step-shaped

energy distribution N -a N(E /81) is represented by the partition

N N2  N3 ... N ... NM

12 3 a i4

where

1 +2 +. N 3 + ... N+ ... NM -N (8)

N 112/8w + N1 2 /8nr 12 /8w + .. N 2/8w + 2. -218 9
11 2 3N3 ... N i I"MM' 1  N<E /8r>.(9

is the total number of measurements (N a.) and <E /8w> is the total field

energy density measured in the N independent observations. The entire energy

density N<1 2/8> can be distributed in a large number n of ways over sets {N a N

of numbers N . By elementary combinatorics (Tolman 1938),

Hl NI / N 1  N 2! N 3! ... N!a ... NMI (10)

The energy distribution N (12/8) observed in statistical equilibrium is the mostThea

probable one. Thus, N (12/8w) is determined by the condition for a maximum of i)

the number n of realizations or ii) the entropy S - ln, subject to the constraints

(8) and ( 9).



-. - - -. - - ,.-. -:L : : . - .L - . : ..- '.,.-.w -. 4-. .-

6

Accordingly, we determine the probability distribution N (t2/8) from the

maximum of the function lnnI f(N ),

c*1M
inJl - N(IruV 1 ) 1 iN (InNa 1 ) (

a.
with

M
a N a N , (12)

M

SN g2/8Nr - N (13)
all a N nKT

as constraints. Eq. (12) holds by definition of N, whereas Eq. (13) holds for a

large number N of measurements and the average energy density <E /8w> of Eq. (6).

Addition of the constraints (12) and (13) multiplied by the Lagrangian multipliers

-X and -U to Eq. (il) leads to the compact maximum conditions for lnn,

3F(N )/aN W 0 , a F(N a)AN C< 0 , C1- l,2,...M , (14)

where
M M M 1

F(N) - N(lnN - 1) - I N, (lnN - 1) - A I N - I N 2 /8r (15)
a al a-l a-i

The solution of Eq. (14) gives the distribution N of the "discrete" energy densi-

ties 12/8w in the forma
C&2

_ 2/8w
N - As a A m e- ' I +1  . (16)

Henceforth, the subscript a is dropped since I can be any point t in the field

space. The dimensional constants A(X) and p are then given by the normalization

conditions (12) and (13),

A 2e2/8w4wE 2dE - N (17)
0

A I
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A f (-2/8n )e - 11 81T(E /w d E nKT , (18)
02

as

A - (8r 2nKT) -3/2N 1 l/nKT (19)

For this normalization, which still contains the number N of measurements, the

probability distribution (16) for the microfield energy density is

W 2 N - 2/87nKT (20)

(8w 2nKT)3/2

In theoretical applications, one is interested in the probability dP - W(E)d E

for finding a microfield in the volume element d E about the point E of the field

space, with the normalization fdP - 1. The corresponding distribution function

W(f) of the colleceive microfield is obtained by renormalization (N -- 1):

W(() - (8 2nKT)-3/2e- 2 /8m KT . (21)

This fundamental distribution has the form of a Gaussian, i.e., all its moments

exist, e.g.,

< - fffO(1t) d3 - , (22)
i -"

<11> .fff '(Zd 3 f . "(23)
- a

j +fff ew()d " 12 =KT (24)

The most probable (E.) and the r.m.s. (EW ) collective microfields are by Eqs. (21)

* and (24)

Ea - (swn(T) 1/2 , (25)

- (12wnKT)1 /2  (26)

(24

I- * C ~ % 4-..-. . . .
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For considerations concerning the fluctuation of the collective microfild

E(t) at a point rcn with time t, temporal averages can be defined by

1 2T

2TMm1 1ir 4 t) 2 dt (28)T
" '  

-T

t2 -..-..m 1 -ft~t t(8

The fluctuation of t(t) is defined by AE(t) =(t) - (t) with (t) = 5. In

stationary equilibrium, the time averages are identical with the ensemble averages.

By Eq. (21), the mean square (temporal) fluctuation of t(t) is

AE 2 . i2- - (3- 8)4nKT (29)
21/2

TABLE I compares the r.m.s. field E and the r.m.s. fluctuation (AE2)1/2 of

the collective microfield with the nearest neighbor Coulomb field Eo = 2w(4/5) 
2/ 3x

I2  in dependence of the particle density n for an ideal electron gas
(y << 1, T - 104.K). It is seen that E and (E 2 ) 1/2 are one to two orders of

18 -3magnitude larger than E in the range of ideal gas densities n < 10 cm . For

these reasons, the Coulomb field E represe.-s a small contribution to the
0

microfield in ideal gases of charged particles. The result EW >> E0 is readily

understandable since for ideal conditions

* 22 ,/)(,/.) 2n1/3
/ 2 . (w /3)(4/15) 41. e2 n 1 (30)KT

The probability for observing a collective microfield with intensity E - E
* 2

in the range between E and E + dE is P(E)dE - W(E)4rE dE, where W(E) is given by

Eq. (21). The maximum of the probability density P(E) is P(EM)- 4exp- (81 2nKT)-i/2

by Eq. (25). Accordingly, the normalized probability density is P(E)/P(EM) -

x(E2 / 8wnKT)exp[l - E2/8wnKT.] < 1. Figure 1 presents P(E)/P(EM ) M P(E
2 /8nKT)

versus E2 /8nnKT. This distribution is a displaced Gaussian with a maximum
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P(E,/81nKT) = 1 at E = F,,. The most probable electric field E, = (8inKT)I "

increases proportional (nT)l1/2 with increasing nT values. The increasing

quantitative importance of the collective microfield E in ideal charged par-

ticle gases with higher pressures p = nKT is obvious.

On the other hand, in a quasi-neutral electron (e) - ion (i) plasma

(n= Zni), the microfield energy Up differs by a factor of order (nfeD3)- I

from the microfield energy E2/.8n [Eq.(26)] of the charged particle gas, where

D_ = (KT/4ir(ne + n e 2)]1 /2  D is the Debye. shielding radius (Debye and

*~ + e i i #D

Hueckel 1923). Since (n D 3) -l << i for ideal conditions, the microfields in

plasmas are small in comparison with those in ideal gases of like charged

particles. In a plasma, the random electric fields of the negative electrons

and positive ions compensate each ether nearly completely. This incomplete

statistical compensation is the physical reason why 0 < Up << 2/8.

I 'J ~ A. A ? i.
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ENERGY RELATIONS

A gas of charged particles in thermal equilibrium at a temperature T ex-

3
hibits various macroscopic energies, the average kinetic energy </> - 3nKTQ, the

average electric field energy <U> - <E /8>n, the average interaction energy <>

and selfenergy <T> of the charged particles. In order to derive the interrela-

tion between these energies, the formation of the gas by an electric charging

process is considered. For this purpose, we assume that the charged particles

are initially dispersed at infinity where they have only selfenergies. The gas

is then built up by moving one charge after the other from infinity into the

volume n, which requires work against the resulting Coulomb field of the charges

already present in n. The thermodynamics of the charging process is illustrated

by i) a reversible isothermal and ii) an adiabatic or isotropic model.

The electric charging work expanded in moving N charges e against their

collective Coulomb field from infinity into the (finite) volume n is (* designates

exclusion of terms with p - v)

A" -' e [ r e 51. (31)

where r () are the position vectors of the U-th (v-th) charge e in the volume

0, respectively. The collective microfield of the N charges at a field point

(r,t) is the superposition

N
I E (rt) (32)

where (P,t) are the individual Coulomb fields produced at the field point

(,t) by the u-th charge. By Eq. (32), the electric field energy of the gas Q is
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whre u- ~ffflE 0t 'd 'r + T~ (33)

N (3)
81t P 1 V- n 11V

1L N 2d r

are the (e-e) interaction energy and the (e)selfenergy of the charged particle

gas, respectively. Comparison of Eq. (31) with Eq. (33) reveals the interre-

lation

U - T - 0 - A • (36)

Thus, we see that the field energy U is the sum of the interaction energy 0 and

the selfenergy V [Eq. (35)]. The charging work A leads to an increase of the in-

teraction part 0 of the field energy U (Eq. (36)]. The selfenergy T of the charges

is independent of the spatial locations of the charges, i.e., 7 is the same before

and after the charging process.

Another independent energy relation is obtained by multiplication of the

2-1- 2
coupled Newtonian equations for the accelerations d r ,Y(t)/dt of the u-th charge

and the v-th charge by their respective velocities v ,(t) - dr ,V(t)/dt and sub-

sequent sumation over all particles U and v. The resulting expression can be

brought into the form d(K + *)/dt - 0, which demonstrates that the sum of kinetic

(K) and interaction (4) energies is an invariant RoV

K + 0 Ho  (37)

where
N

K" *mv (38)

and 0 - A is defined in Eq. (31). Eq. (37) expresses the conservation of kinetic

K and interaction $ energies in a gas of charged particles which interact by longi-

tudinal Coulomb fields.
''~~~~~~~~~~~~~~~ N,,,,=il I'I'i .. .< ... " ,,""%'',,
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The thermodynamic functions of the gas depend in general on the volume 2,

the number N of particles in Q, and the particle averages of the random kinetic
.1 -2 1

energies 2mv and the random field energy densities E /81. Accordingly, we

th thassume U h  U (T,e,N) for the thermal energy and S - S(T,e,N) for the entropy,

where

= -2
3KT/2 <imv > E -<E /81> (39)

For gas formation by isothermal reversible charging, the volume a is

embedded into a heat bath of temperature T. The transfer of dN charges e from

infinity into the cavity n requires on the average the charging work dA - d<U - T>

- d<U> by Eq. (36), and their thermalization at a temperature T consumes on the

th 3average the energy' dU i 3KTdN. The difference of these energies, dQ, is

supplied by the heat bath. In accordance with the first law of thermodynamics

dQ = dUt h - d<U> (40)

since no other than electric charging work is performed on the system (dn = 0).

The associated entropy dS - dQ/T is a complete differential,

dS _ -th )dT + _I _L(U - <U>)de + -- (Ut h - <U>)dN . (41)TS 3T U -<U) T 3E 3NUt

Application of the condition 3 3 S - a a S to Eq. (41) yields the partial differ-

ential for constant N and T,

authPC - 3<U>/3C (42)

Since Uth - 0 for e - 0 (no thermal energy in fl before charging), the integral

*. of Eq. (42) is

-' Uth
th n (43)

*'. ,t t . % . y~.* <~ ** *. . . . .
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Eq. (43) could have been derived by other thermodynamic gas formation

processes, e.g., by adiabatic charging of the cavity Q. in this case dQ = 0,

and by Eq. (40)

dQ - dUt h _ d<U> 0 <U> = Uth (44)

Finally, <U> can also be determined as that equilibrium value which maximizes

the entropy,

dS T-  dU - d<U>] 0 <.U> = Uth (45)

Eqs. (43) - (45) indicate that an equipartition between thermal energy and

average microfield energy exists in statistical equilibrium. This fundamental

result is explicitly (Mints 1957).

NKT - ./S > (46)2 lE/>

i.

-. ,) . . , , . -. . - . . . - ., . - . . . . .... . - . . . ,. . . . . . .
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CONCLUSION

In ideal gases of charged particles, the distribution function of the

collective microfields is strongly temperature and density dependent. For

typical temperatures and densities of ideal systems, the r.m.s. collective

microfield is by orders of magnitude larger than the quasi-static Coulomb

field. In statistical equilibrium, a balance among (average) kinetic particle

and collective microfield energies exists, which is independent of the process

of the formation of the charged particle gas.

The derived formulas for the average microfield and energy are appli-

cable to ideal gases consisting of one species of charged particles. Examples

are electron gases in highpower tubes and diodes, and non-neutralized beams and

clouds of charged particles in outer space. Our results are not applicable

plasmas, since in these the electron and ion components have no independent

existence (coupling of the negative and positive charges through the self-

consistent field and quasi-neutral or quasi-compensated behavior).

%7
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APPENDIX D

COVARIANT ELECTROMAGNETIC THEORY FOR INERTIAL FRAMES WITH SUBSTRATLM FLOW

H. E. Wilhelm

Michelson Laboratory, Physics Division, Naval Weapons Center, China Lake, CA 93555

Abstract

Based on the Galilean relativity principle and Maxwell's equations,

electromagnetic field equations are derived for inertial frames, in which the

substratum of the electromagnetic waves flows with arbitrary velocity I'I < c

(velocity of light). It is demonstrated that the electromagnetic field equa-

tions with electromagnetic substratum flow are strictly covariant against

Galilei transfotmations. Wave equations, conservation and invariance theorems,

and boundary conditions are derived for the electrodynamic fields in presence

of electromagnetic substratum flow. Initial-boundary-value problems are solved

for electromagnetic signal propagation and induction in the substratum by an

integral equation method. Physical effects-Zor the measurement of the veloc-

ity field of the electromagnetic substratum are discussed. Maxwell's conception

that his equations refer to a frame of reference with resting electromagnetic

substratum is confirmed, and it is shown that Maxwell's equations are also

applicable to inertial frames with small substratum velocities, Ij << c.

1S1•



INTRODUCTION

Since the discovery of the 2.7*K cosmic microwave radiation [Wilson, 19801

Maxwell's original ideas on the propagation of electromagnetic waves in the so!-called

electromagnetic ether have become of renewed interest. According to Maxwell,

Heaviside, Lorentz, and Poincard the electromagnetic field equations refer to a

system of reference in which the carrier of the electromagnetic waves is at rest

[Whittaker, 19511. By comparison with other wave phenomena, this restriction appears

to be physically and mathematically necessary, since the Maxwell equations do not

contain explicitly the velocity field w of the electromagnetic ether [Lorentz,

1909). The most familiar "material" properties of the ether are the electric (Eo-

10- 9/36w Asec/Vm) and magnetic (uo - 4wxlO- 7 Vsec/Am) permeabilities, the wave

resistance Zo  - (uo/co)1/2  - 376.731 n, and the velocity of light co  -

(Uoco)- 1/ 2  - 3xlOm/sec [Stratton, 19411. The difficulty of observing the

substratum by other than electromagnetic experiments (e.g., measurements of the

velocity of light and frequency shifts) is probably due to an extremely small inter-

action cross section of particles with the substratum. Evidence for this is given by

Fizeau's (18511 ether drag experiment which shows that the ether is not noticeably

carried along by liquid matter flowing in tubes.

As noted by cosmologists, e.g., Hansouri and Sexl [19771, "The validity of the

principle of relativity (which assumes that the velocity of one and the same light

signal has the same value vs - c o In all (a) inertial frames) seems to be less

evident now than, say twenty years ago. The discovery of the cosmic background radi-

ation has shown that cosmologically a preferred system of reference does exist." In

critical analyses, Ies (1938, 19481, Builder (1958a, b], and Janossy (1953, 1963]

demonstrate that the ether effects cancel out in the measurements of the velocity of

light by Michelson-Morley (18871, Morley-Miller (1905], and their modern versions

[Jaseja et al., 1964; Vessot et al., 19791 (using signals sent out and back). On the

other hand, they show that the experiments of Sagnac [19371 and Dufour-Prunien (19371



(rotating interferometers), Ives-Stillwell (19381, and Michelson-Gale (19251 support

the electromagnetic ether concept. The isotropic microwave background radiation in

the universe appears to indicate thermal excitations of the ether 'at a nearly

isotropic temperature TE - 2.7*K [Wilson, 19801 and ether velocities in the

terrestrial space of the order w - 105m/sec [Henry, 1971).

The impossibility to carry the denial of the electromagnetic substratum in the

special theory of relativity over into the general theory of relativity was clearly

recognized by Einstein [19211: "According to the general theory of relativity space

without ether is unthinkable; for in such space there not only would be no propaga-

tion of light, but also no possibility of existence for standards of space and time

(measuring rods and clocks), nor therefore any space-time in a physical sense."

However, Builder [1958a,b] demonstrated for the first time, by means of quantitative

theoretical arguments, that relativity theory without electromagnetic ether leads to

serious physical contradictions. E.G., we now understand that (i) the clock retarda-

tion paradox would imply the existence of absolute velocities, which contradict the

postulate of the relativity of the velocities of moving bodies, and (ii) the assumed

principle of the invariance of the light velocity can only refer (if at all) to the

average light velocity of a go-and-return path [Builder, 1958a, bi. Accordingly,

Einstein's clock synchronization represents a "thought-ritual," which has no empiri-

cal value for the measurement of the actual velocity of light signals [Alfvdn, 1977],

and the special theory of relativity is a tautology based on average two-way signal

velocities [Builder, 1958a,b; Janossy, 1953, 1963; Ives, 19481.

Comprehensive discussions of electromagnetic substratum physics, from the

theoretical and experimental points of view, are due to Janossy [1953, 19631. Dirac

[19581 and Kaempffer [1953] introduced the ether into quantum mechanics. The

non-Lorentz covariant theory of Wilson [1974] interprets elementary particles as

phase changes of an ether model. Winterberg [19841 developed a nonlinear relativity

theory with ether and a minimum length, which removes the singularities of quantum

electrodynamics on a physical basis. It is equally remarkable that the apparent



velocity dependence of -nass is explaLnable as a particle interaction with the ether

(Bagge, 19791.

The Lorentz transformations (which would hold in absence of the ether, and

follow from the alleged invariance of the velocity of light signals), are not the

sole transformations which leave Maxwell's equations covariant. Other (real)

covariant transformations of Maxwell's equations have been found by Cunningham

[19091, Bateman [1910], Fushchich [1978], and Fushchich and Nikitin [1982]. Under

consideration of the quantum-mechanical commutation relations, Winterberg [1984]

derived nonlinear space-time transformation for high energy systems. Typical for

these transformations is the use of conventional constitutive relations D = cof and

B - UoH for the free space, i.e., the vacuum is assumed to have invariant polariza-

tion properties (Einstein, 1916, 19211.

The simultaneous covariance of Maxwell's equations with respect to Lorentz and

other space-time transformations suggests the existence of covariance under an over-

group of these transformations [Post, 1962, 1967, 1972, 19791. The earliest predic-

tions of the possibility of simultaneous Lorentz-Galilei covariance of Maxwell's

equations go back to Kottler [1922a,b], Cartan [19421, and van Dantzig [1934). The

over-group is identified as the nonlinear set of coordinate substitutions in space-

tim (Post, 1972, 1978). The "exclusiveness" of Lorentz covariance in relativity

theory is the artificial result of an (arbitrary) restriction to the unimodular

choice st-g a 1 [Einstein, 1916), which eliminates other transformation groups [Post,

1972, 19781.

Kottler [1922b), Cartan [19241, van Dantzig (1934], and Post (19621 have shown

that the electromagnetic field equations can be brought into a metric-free represen-

tation, i.e., Maxwell's equations exhibit a metric-independent covariance. Thus,

Maxwell's equations permit a manifold of space-time transformations, if they are not

restricted through the usual linear consitiutive relations D- e and 1 - 1H (Post,

1972, 19791. Maxwell's equations are coveriant even against transformations to

noninertial frames, e.g. rotating frames [Post, 19671, for certain constitutive

s'e **. - (. . .* r" -- " - < . - ... - - -.--. ': -- - - --..' , ', .- . . .. -



relations = F(E) and B = G(H). The accepted linear constitutive equations appear

to be strictly valid only for transformations between inertial frames [Post. 1972,

19791.

Maxwell's equations refer to an inertial frame To in which the electromagnetic

substratum is at rest, o 0, and are, for this reason, not Galilet covariant

[Whittaker, 1951]. We derive herein electromagnetic field equations for inertial

frames Y with substratum velocity w from established axioms of physics (Maxwell equa-

tions and Galileian relativity principle). le demonstrate that these generalized

Maxwell equations, which contain explicitly the substratum velocity ;7, are covariant

against Galilei transformations. Since these are transformations between inertial

frames, the usual linear constitutive relations are assumed [Post, 1972, 19781.

The electromagnetic field equations with substratum flow w and their Galilei

transformations represent a field theory for absolute or Galileian = (x,y,z) and t

coordinates. In inertial frames with substratum drift V, the Coulomb fields of

charged particles are deformed by convection so that a physical length contraction of

material bodies in the sense of Lorentz [19091 occurs. This length contraction

brings about a time dilatation since a clock can be visualized as a light signal

which is reflected anisotropically in the substratum space between two mirrors held

apart by a rod [Builder, 1958a, b]. For this reason, also the interrelation between

the absolute Galileian and the actually measured coordinate and time differences will

be discussed, which is determined by the Lorentz scaling measure y - (1 -

v 2/c2)/ 2 , i.e., a constant parameter for any given inertial frame (C).

The derivation of the Galilei covariant Maxwell equations for inertial frames

with substratum flow are of interest for (i) mathematical and (ii) physical reasons.

The generalized electromagnetic field equations provide physical foundations for

investigations of the electromagnetic substratum. As applications of this theory,

fundamental initial-boundary-value problems are solved analytically for electro-

magnetic signal propagation and induction in the substratum. We present these

results for (I) theoretical discussion and (ii) comparison with experiments.
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ELECTROMAGNETIC FIELD EQUATIONS WITH SUBSTRATUM

According to Maxwell, Heaviside, Lorentz, and Poincar6, the electromagnetic

fields E r( ,t°) and H°( °,t*) in an inertial frame of reference 10(r*,t*,*= 0),

in which the electromagnetic ether is at rest, w f, are determined by the

classical Maxwell equations for conducting media with velocity field [Stratton, 19411:

°×° = - -l°1at °  (1)

Vaxfl ° = +A°o/ato + 3° , (2)

° ,(3)

v°. °  o , (4)

where

j Y a +a E vXB (5)

- Col 10 Or (6)

As usual, the dielectric permittivity e?, the magnetic permeability U°, and the electric
conductivity o are treated as isotropic and homogeneous. Equations (1) - (6) hold not

only for conducting media, but also for insulat;,cg media including the so-called "va-

cuum" ( a* 0) of the system ', which contains electromagnetic substratum at rest,

w - . Equation (5) is Ohm's law for the current density To with space charge flow p *v .

Let Eqs. (1) - (6) be subject to a Galilei transformation of the space

and time coordinates from the system I°(ro,t*,wo=5) to a system , # ),

which moves with the constant, but otherwise arbitrary, velocity u relative to

Z° (0° of I° and 0 of I are assumed to coincide for to t 0, Fig. 1):

S -t , tint , (7)

alat ° Vlat - 7.v , v ° v , (8)
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with

=~~~~~ --- 4j.,~ jjj 9

30 3 + P 0(10)

-).~ , (1.4.1)

as Galilei field transformations. Eqs. (8) follow from Eq. (7) by partial

*differentiation, 3f(o rt*)/Dt.0 = [3f(7r',t)/3t13t/ato + [3f(r,t)/3'r]*ar/ato, and

afo('oto)/3'ro - [3f(r',O/arh3r/ r hr a/t =-uadrr = (. =1

i = j; 6 0, i 0 j).

The Galilei field transformations (9) - (11) are established empirically,

but will be justified theoretically by covariance requirements. Furthermore, since

medium density antd temperature are Galilei invariants,

Co =e Po , P 9 00 , (12)

The invariance of e and pi implies the Galilei invariance of the characteristic

phase speed of light [Stratton, 1941]

= -1/2 ')-1/2 -c. (3

Since the ether is at rest, -w in the system 1%, the ether moves

with the velocity w - u"0 in the system Z (Fig. 1). Application of the

G~1ilei transformations (7) - (12) to Eqs. (1) - (6) yields, therefore, the

* electromagnetic field equations in the inertial frame of reference

in which the ether streams with the ve'icity w:

VXI+ _WXI) - -(aat + _WV)7 (14)

VA- +(aat + '.7)( + CeWxI) + - , (15)



V.(D + E,B) (16)

. = 0 , (17)

where

S= + a(+ + ) (18)

D = E , =H. (19)

Below, it will be demonstrated that Eqs. (14) - (19) are covariant against

the three-fold infinite number of possible Galilei transformations. For this

reason, Eqs. (14) - (19) are fundamental electromagnetic field equations, which

hold for all inertial frames of reference Y(r,t,w), in which the ether flows

with constant, but otherwise arbitrary velocity Z . In addition, Eqs. (14) -

(19) are approximately correct for inertial frames of reference Z(r,t,w(r,t)) in

which the ether flow field w(r,t) is inhomogeneous, as long as the spatial and

temporal nonuniformities of -(,t) have characteristic extensions laI in space

and itl in time, which are large compared with the dimension and duration

of the electromagnetic process, respectively. The latter conditions are frequen-

tly satisfied since most experiments are restricted to spatial regions which are

neglegibly small compared with the universe.

At interfaces between different media, boundary conditions for the electro-

magnetic field vectors are required. These are obtained by integrating Eqs.

(14) - (17) across the interface with normal vector n. If n points from medium

"1" to medium "2" and [F] F 2 - Fi' the boundary conditions in presence of

ether flow w and interface motion v are:

nx[E] - (n.=) -mi (20)

nx + _Wx( + ecWxiB) C - 'i) 5 + cewx-1s +, (21)

e.- .. **~
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n-D+ xWB (22)

n B 0 ,(23)

where J is the surface current density and p* is the surface charge density.

In the derivation of Eqs. (20) and (21), the relations w.VB = -7x(w4B) and

W .7[D + wxB) - w = -V.{ ×( + w'xB)}, both for constant w, were used. The inter-

action of the ether with the interface is negligible, hence [W] = 0. In general,

the interfaces separate regions of space in which both E, ji, and z are different,

and the interface moves with a velocity field v.(,t) i 0.

The derivation of the generalized electromagnetic field equations (14) - (17)

has been carried through in the RKS system for physical reasons. In comparison

to the cgs system (E and H same units), the Giorgian system is superior since

(i) it introduces charge as a separate independent unit and (ii) it permits to

treat charge as an invariant not only for Lorentz but for all Kottler-Cartan-

Dantzig-Post type space-time transformations [Post 1972, 1979] including the

Galilei transformation. The invariance of charge "e" is related to the invari-

ance of the characteristic speed of light co = (PoEo)-I/2 since c - m e IhI

for dimensional reasons (no mass dependence, m0 - 1). This fundamental relation

appears to indicate that electromagnetic wave propagation involves quantum-

mechanical interactions (h - Planck constant) of charges e associated with the

ether medium (eo,'o).

.€ " . - . ., .,. -,, ,q .". . , • .. . .- .p. ' .'. ... ... . • ... -.. ... .-... ,. . - . . . .. .. • .,.... ...



GALILEI COVARIANCE OF ELECTROMAGNETIC FIELD EQUATIONS

The laws of nature are of the same form in all ineitial frames [Einstein, 1916].

In view of the derivation of tie electromagnetic field equations (14) - (19) with

ether flow w they should be covariant against Galilei transformations. The rela-

tions for the Galilei transformation of the independent variables and the

dependent fields from the inertial frame 1(r,t,w) to the inertial frame

which moves with the constant, but otherwise arbitrary velocity u relative to

are given by (0 and 0' of I and [' coincide for t t' 0 0, Fig. 2):

-1. 4.
r r - Ut , t' f t , (24)

aat- Vt, v = v' , (25)

and

4. ' - -,, (26)

*=3'+ 'i UP ' , (27)
- + -0. .+0.

V ' + U w w'+ , (28)

where

C-=' 1= f' a-=' . (29)

Substitution of Eqs. (24) - (29) into Eqs. (14) - (19) results in the electro-

magnetic field equations for the inertial frame '(r', t', w') with ether flow w':

vIx(', + *,,'x,) - -(3/at' + '.v')1' (30)

'xti, . +(a/at' + '.')(D' + c''xB') + i' - p ,. , (31)

+ e'W',,4') = ' (32)

- 0 ,
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where

3' . p, ,+ '(t' + 'x ') , (34)

t' -#E B' U I' H 1' (35)

The Eqs. (30) - (35) for the inertial frame r'( ',t',w ) are indeed of the same

form as the Eqs. (14) - (19) for the inertial frame N( ,tw). Thus, the Galilei

covariance of the proposed electromagnetic field equations (14) - (19) with

ether flow w is demonstrated. This covariance is the necessary condition for

Eqs. (14) - (19) to be generally valid.

It is remarkable that the Galilei transformations (26) of the fields E

and A are not symmetric. In view of Eq. (29), Eq. (22) can also be stated as

D , x,' . (36)

4. , P1 1J - 4The analogous transformation formula for the magnetic field, B - B'+ u'UxD, does

not render Eqs. (14) - (19) Galilei covariant. This relation is incompatible

because it implies magnetic charges, V-B 0 0, for which no experimental evi-

dence exists.

44-

According to Eq. (16), an ether flow w transverse to the magnetic field B

induces an electric charge density 0w,

VD - p + w Pw -V'(r ) . (37)

This interesting effect could, in principle, be used to detect the ether flow w

through space charge measurements. Unfortunately, it appears that

Pw M c w.VXH (38)

5 10 2
is very small for laboratory experiments (w < 10 m/sec, VxH < 10 A/m2 ) and

even for cosmic situations, e.g., for quasars (w c, 74 < 10-4 A/m 2).7* .a2 .o %7 C-CM F-F



WAVE EQUATIONS FOR ELECTROMAGNETIC POTENTIALS

The basic Eqs. (14) - (19) represent a system of coupled partial differ-

ential equations of first order for the electromagnetic field E( ,t) and

16 ,t). With regard to mathematical applications, it is desirable to work with

decoupled wave equations for the scalar potential D(r,t) and the vector poten-

tial l(rt). From these, the electromagnetic fields are derived as partial

derivatives,

E -/ - t ,Vx. (39)

Since an arbitrary vector field A(r,t) consists of a solenoidal and an irrota-

tional part, and V.A is still unspecified by Eq. (39), A is subject to the

"ether gauge"

'74 / -i (/t + Z*v)(s -7)) , (40)

which reduces to the Lorentz gauge for w . The relations in Eq. (39)

satisfy Eqs. (14) and (17) identically. Elimination of t - e and I -

from Eqs. (15) and (16) by means of Eq. (39) yields, under consideration of

Eq. (40), the inhomogeneous wave equations for the vector potential (r,t) and

the scalar potential Y(r,t) - *(r,t) - '(r,t):

[pe(w/3t +-v) 2 - vZfk - - ) , (41)

[WC(/at + W. )2 - v2 ](0 - w.1) - P/C , (42)

where e - c - . These hyperbolic equations exhibit the convective influence

of the ether flow w on the electromagnetic potentials. Eqs. (41) and (42)

reduce to the conventional wave equations for 1(6,t) and 0(1,t) in the

special case of the Maxwell frame 0 with resting ether, w - 8 [Stratton, 1941].



1-2

the initial and boundary conditions for A(r,t) and '(r,t) = (r,t) -

W.I(r,t) follow from those for E( ,t) and B( ,t) via Eq. (39). Thus, the

solutions 1(r,t) and IF( ,t) of the wave equations (41) and (42) can be estab-

lished for known current and space charge distributions T(r,t) and p(r,t). As

an example, we give the solutions of fundamental retarded potentials of

Eqs. (41) and (42), which are generated by the sources J(r,t) and p(*,t):

-1('r, t) = ,fffR-[(-r*,t-R/c) - (-**, t-R/c)]d3d* (43)

- 2

40-r-t fff R-1[(1- )p(*t,t-R/c) + c w-al*,t-R/c)]d3r* (44)

where

R TO R(r,r*) ,

is the distance between the field point (-) and the source point (r*). By

Eqs. (43) and (44), the sources T(4*,r) and p(a ,r) at the source point r con-

tribute, at the retarded time T - t - R/c, to the fields T(',t) and 0(*,t) at
r R( ,'*) c - (uc)-1/2

the point r and time t of observation. Since R( and are

Galilei invariants by Eqs. (24) and (29), the time retardation At - R/c is a

Galilei invariant as expected [At - At' by Eq. (24)].

The retarded potential solutions (43) and (44) refer to the inertial

frame 1(+,t,w), in which.the ether velocity is # . They indicate that the
corresponding solutions for the Maxwell frame Z ) are approximately

valid also for I "*l << c. However, for 1 " - c, the effects of the ether

flow w" on the potentials U(X,t) and O(tt) are quantitatively significant.

Note that also the nature of the 0( ,t) solution changes with respect to its

sources as J'J increases from 0 towards c.

- s
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The ether gauge (40) and the wave equations (41) and (42) are covariant

against the Galilei transformations (24) - (29). This covariance is obvious.from

the co-/ invariance of the operators and field expressions in Eqs. (40) - (42),

namely:

a/at + W = /at' + w'.V' , V (46)

-- t' , (47)

- .- ' - '.W ' (48)

"- P4 4.' -P , (49)

P P' , (50)

and Eq. (29). The unprimed and primed fields refer to the inertial frames

4. -1. P
S(r,t,w) and 2'(r',t',w'), respectively. Since the relative system velocity is

- ). - -) I . -1 4-.
= - w' - v - v' (Fig. 2), Eqs. (46), (48), and (49) imply the Galilei co-/

invariants

lt + V-v a/at' + '.v' (51)

* - v*" - 0' - '1,' , (52)

- p; - - p 'v (53)

In terms of the electromagnetic fields, the Galilei invariants (47), (48), and

(52) assume by Eq. (39) the form (Stratton, 1941].

1-1' , (54)

" + '1 - 1' + 'x' . (55)

1 + -V"X = 1' + -V'X1' (56),
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By meahs of the invariants (46), (49), (50), and (53) - (56), the Galilei

covariance of the basic electromagnetic field equations (14) - (19) with

ether flow w is now immediately recognized.

In the special case - , the new wave equations (41) and (42) with

ether flow combine to the relativistic wave equation t{A,i1/c} - -Ipj,icp}

with the Lorentz covariant operator C - 72 _ c2 -1. This D'Alembertian can,
t

in no way whatever, describe anisotropic light propagation or the nonreci-

procal asymmetry between the clockwise and counterclockwise beams observed

in the Sagnac experiment [Post, 19671. Anisotropy and nonreciprocity require

mixed space-time derivatives 7 a in the wave equation (Post, 1967]. These

are generated by the ether convection w.V in the proposed wave equations (41)

and (42) with the nonsymmetric operator 0 - V c-2(8 + w.7)2. The space-

time symmetry is destroyed by the ether flow w, i.e., exists only in the

ether rest frame where w

aw
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ELECTRODYNAMIC CONSERVATION THEOREMS

In the generalized electrodynamics with ether flow w, charge, energy,

and momentum of the fields are conserved in all inertial frames (,tw with

ether motion w. These conservation theorems are presented and shown to be

Galilei covariant.

Charge Conservation. The divergence of Eq. (15) yields, under consideration

of the vector identity for atbitrary fields a(r,t),

v((a/at + .v)A] = (a /at + .v)v-, , (57)

and Eq. (16), the conservation equation for the charge density in the inertial

frame 1(r.t,w):

(a/at + ..V)p - -v. - P,) . (58)

This equation is Galilei covariant in view of Eqs. (46), (49), and (50).

Eq. (58) is equivalent to the usual charge continuity equation [Stratton, 1941j

-p/at - -V (59)

Electromagnetic Energy Conservation. In accordance with the vector relations

for arbitrary fields a(r,t) and t(r,t),

-.(lxt) - - Vx, (60)

a* (a/at + OV)a m (3/3t + V)a2/2 , (61)

scalar multiplications of (i) Eq. (14) by and (ii) Eq. (15) by (I + l),

- and subtraction of the resulting equations (i) and (ii) - , results in the

conservation equation for the field energy in the inertial frame 1(r,t,w):
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( /at + w1)[IYE + 2 -17 E + wx~)A - iW-

(6Z)

This equation is Galilei covariant by Eqs. (46), (49), (54), and (55).

Equation (62) can be rewritten in the form

(alat + W-v)(u e + Um) -V4 - Q (63)

where

U C + w-- I) 2  (64)e 2

U 142(5
M 2

4- _Io
I (E + wB)xH (66)

Q" ( -p,)-( + x) , (67)

are the electric and magnetic energy densities, the Poynting vector, and the

ohmic power density in presence of ether flow w. Note that Eqs. (64) - (67)

define generalized concepts for energy density, energy flux, and power density

of the electromagnetic field, which are Galilei invariant.

Electromagnetic Momentum Conservation. The generalized electric and magnetic

4*4
stress tensors T in presence of ether flow w are introduced by means of thee,3

vector identity

4, ~ 1-240 ~
(Vxa)xa - - la 6) - aV-a (68)

which gives

CX( + xl)]x( + WX) - VT - (I + XI)7'(j + X) (69)
e

(V-) VAT -"' (70)

where

e 2( +  1)(I +  ") + -

: . - 2-
T - (72)m 2
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The dyadics (71) and (72) are Galilei invariants by Eqs. (54) and (55).

Vectorial multiplications of (i) Eq. (14) by xE(E + wxB) and (ii) Eq. (15)

by xB, and addition of the resulting equations (i) and (ii), gives the conser-

vation equation for the electromagnetic momentum in the inertial frame 7(r,t,w):

(a/at + w. + -[PC E + +'TH) -((E + - (i - -w)xB , (73)
e m

or
+ fi-~ -~-

(a/at + W.V)(Wjf) - V'r + T )E - j XB (74)
e m

These equations are Galilei covariant by Eqs. (46), (49), (50), (55), (71),

and (72). Equation (73) or (74) is a relatioh through which the forces on charge

P(r,t) and current j(r,t) densities can be expressed by the electromagnetic fields

1r,t) and B(r,t) in the medium, which is assumed to be homogeneous with respect

to e, p, and a. In particular, if the electromagnetic momentum change (a +w-7)
t

(Il) is negligible, the electromagnetic force density equals the divergence of

the field stress tensor, PE + JxB V. + T) [Stratton, 1941].

Within the frame of the Galilei covariant electrodynamics for inertial

systems (',t,W) with ether flow w, generalized conservation theorems for energy

[Eq. (67)] and momentum (Eq. (73)] of the electromagnetic field have been found.

These reduce exactly and approximately to the ordinary electromagnetic conser-

vation equations for ether velocities w - and vi' << c, respectively. Equa-

tions (67) and (73) predict significant physical effects for large ether veloci-

ties * ] - c, e.g., in the vicinity of distant galaxies and quasars with extremely

large ether expansion drifts. A verification of the ether terms in Eqs. (67)

and (73) by means of laboratory experiments may be difficult, since macroscopic

p4" platforms can presently not be accelerated to speeds v •104rn/sec.

% % % . % ' % % • , ~ ." % . . . . . ,. . - . . ,.. .- . -
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SIGNAL PROPAGATION IN SUBSTRATUM

According to the solutions of Maxwell's equations (1) - (6) for the

inertial frame of the resting ether (W**= 6), light signals propagate with an

isotropic speed vo - c - (PC)- , which is independent of the velocity and
S

acceleration of the source. This independence from velocity and acceleration

of the emitter holds also for signal propagation described by the Galilei co-

variant electromagnetic field equations (14) - (19). However, the signal velocity

s S vs(r 'w) is no longer isotropic in inertial frames 1(r,t,w) with ether flow

In order to understand signal propagation in the ether, consider the

elementary excitation of an electromagnetic wave pulse by the sudden application

of a current pulse j*(t)[A/m] to the surface x - 0 of an ideal conductor (o )

at time t - 0,

j*(t) - (O,O,1H(t)) , x - , t o , (75)

where H(t) is the Heaviside step distribution, dH(t)/dt - 6(t). The resulting

electromagnetic wave emitted from the "sheet antenna" at x - 0 at time t - 0 is

of the form (Fig. 3)

- {O,B(x,t),0) , I - {0,O,E(x,t)} . (76)

The propagation of the wave (76) in the charge (P - 0) and current (1 - 0) free

space x > 0 with ether flow parallel to the wave propagation (Fig. 3)

w- (W1110,0} , w l Z 0 , (77)

is determined by the hyperbolic initial-boundary-value problem [derived from

Eqs. (14) - (17) and Eqs. (20) - (23)]:

- 4 44 4>
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(a /a t +W11a /aX) 
2 B c 2 , B3 0 <x < , (78)

B(x,t0) =0 0 < x <~ (79)

a B(x, t=0) /3t =0 0 < x < , (80)

B (x0-, t) 2 /Cl 2 2- 1 *) 0 < t <o (81)

The Laplace transform method gives the solution of Eqs. (78) - (81) as the integral

functional

B(x,t) - 2i F(s)ets5(x-wIt)s/cds (82)

where

1 ja~il -) 2 2-1*(3-F- F(s)el+9/tds'9/)j(t

by the boundary condition (81). The integral equation (83) for the Laplace

* amplitude F(s) has closed-form solutions for certain J*(t) functions, e.g.,

F(s) - UU( 2- / 2 2--1 ,I <C , (84)

* for the boundary value.(75). Equations (82) and (84) combine to the wave pulse

solution:

B(x,t) - p(l - 1,/c 2 1 H (t - ;;-), x > 0 , (85)

with

E (x, t) - - v,+c) P (1 1/C2 ) 'JH(t - x)c x > 0 , (86)

by Eq. (14). Equations (85) and (86) follow from the discontinuous integral

(Eqs. (82) and (84)],

1j fLI s_ se ts(X-'MIt)5/c ds -H(t - c- 1 (87)
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where x- l t
H(t C x- =H(t -. &c) , i < C (8

The results (85) and (86) are physically interesting in several respects.

As typical for hyperbolic equations or processes with finite characteristic speed

c < -, the wave fields are discontinuous at the wave front (Fig. 3). The posi-

tion and speed of the signal front are in the inertial frame I(x,y,z,t,wl1 )

E(t) - (w1I + c)t k ct w i 0 (89)

v11  W+c ;c (90)
S 1,

Accordingly, the electromagnetic signal propagates with a velocity v 11 ; c depend-
s

ing on whether the propagation occurs in (>) or opposit (<) to the direction of

the ether flow w1 " Only in inertial frames moving with the ether, the signal

propagates with the velocity v* - c in all directions, i.e., the Galilei invariant
5

c = (P-C) is the speed of light relative to the ether. Apparently, c repre-

sents the upper limit for the ether velocity, [WI < c, since I'I I and 11 E.1

for I I v c by Eqs. (85) and (86). It is also seen that for the electric and

magnetic field intensities of wave phenomena

III - IWv, + cl-Il I w11 + c Ic , w1  o . (91)

This relation could possibly be used for the determination of the ether speed

[wll through very accurate interferometric comparisons of the electric and magne-

tic amplitudes of waves.

In the same way, the initial-boundary-value problems for signals propagat-

Iing in directions perpendicular to the ether velocity w can be solved, with v S

(C2 - w2)/ 2 . Accordingly, electromagnetic signal propagation is anisotropic

v v i in inertial frames with ether flow.
s s
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ELECTROMAGNETIC INDUCTION IN SUBSTRATUM

As an elementary model for the generation of electromagnetic pulses by

induction in the ether, consider a plane copper slab (initially at x = 0), which

is accelerated at time t = 0 across a homogeneous magnetic field Bo = {O,B ,01

to a velocity v = {a(t),0,01, so that the position of the front surface is at

x = a(t) at time t with a(t=0) = 0 (Fig. 4). The duration At of the (explosion

driven) piston motion is assumed to be small compared with the field diffusion

time tD = ad2 (slab thickness d). The motion of the quasi-ideal conductor (o"1

across 1 induces at its front surface an electromagnetic field of the form

I - {0,-3A(x,t)/ax,O} , I = {O,O,-aA(x,t)/3t} (92)

which propagates into the space x > a(t) of Fig. 4. Let the ether flow be

parallel to the direction of wave propagation, w - f[ ,O,01, w C 0. The vector

potential A - {0,O,A(x,t)) is then determined by the hyperbolic initial-boundary-

value problem for the homogeneous wave equation (41):

S(A/t + a[ /ax) 2 A - c2 a2A/x 2  , a(t) < x < (93)

A(x,t-0) "-Bo0x 0 < x < , (94)

3A(x,tO)/t - 0 0 < x < , (95)

[aA(x,t)/3t + A(t)3A(x,t)/Xx a(t) = 0 , 0 < t < - (96)

Equations (94) - (96) consider that B(x,t-0) - Bo, E(x,t=0) - 0, and E(x,t) +

v(t)B(x,t) - 0 at the moving piston (a - -) surface x - a(t). The solution of

Eqs.(93) - (96) is by the Laplace transform method
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A(x,t) = -Box + 2 -f G"sets (X- sds (97)

where
1sf~t-i t=+i- 1(t-

2--f sG(s)etS[a(t)-9 tJS/Cds - a(t)B 0 /[l - "1 (98)

a -ic

by the boundary condition (96). The integral equation (98) for the Laplace

amplitude G(s) has closed-form solutions for certain piston motions A(t), e.g.,

for the Heaviside velocity pulse

-2 vo 0-1
A(t) - VoH(t), G(s) = vBos (- - ) , .w111 < c (99)

0 0 0

From Eqs. (97) and (99) result, under consideration of Eq. (92), the solution

* for the induced electromagnetic pulse fields:

A(xt) -B x + +vB /c ) voBo(t- )H(t- ) ,x Vt ,
0 (+j/C - vIc) o 0 +C + c 0

= 0 ,x< v 0 t , (100)

v /c
B(x,t) - B + B H(t - x x > v t ,o (l+w Ic-v Ic) o W1+C0

=0 ,x < V t (101)0

v°/c - ,x> °

E(x,t) 0 (l+ llC-v/C) (ij + c)BoH( t - x x > vt

S , x<vt . (102)
4o

In the derivation of Eqs. (100) - (102), the discontinuous Laplace integrals

have been expressed as Heaviside impulse functions, in accordance with Eqs. (87)

and (88).

Equations (101) and (102) indicate that the electromagnetic wave pulse

induced at the front surface x - v 0t of the conductor, which pushes the flux ofIo

the magnetic field Bo, is discontinuous at the wave front &(t) (wi, + c)t ; ct

*'~ q ~ ~ ~. **4**** .. ~.* .~ * ~ *~*
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for I 0, which propagates with the speed v =w1 + c Z c for w, e 0 in the

inertial frame (x,y , Figure 4 shows the induced- magnetic field pulse

B(x,t) - B(x,t) - B0 , which occupies the space v0t < x < (w, + c)t at time t.

Thus, the electromagnetic signal propagates with a speed v c in the inertial
S

frame I depending on whether the propagation occurs in (>) or opposite (<) to

the direction of ether flow w. The electric and magnetic wave intensities are

interrelated by fE- 1w,, + cI'iBi. Equations (101) and (102) indicate that for

ether drifts w] opposite to the piston velocity v°

IB(x,t) - B01 - for vo - . c , W11 < 0 , (103)

JE(x,t)l - for vo - '11 , c , W1 < 0 . (104)

Accordingly, copious amounts of radiation would be produced by magnetic flux (B )

pushers in regions of space with large ether drifts 10-1c < 1Jw1 < c (distant

galaxies, quasars). On principle, even the limit vo - w11 - c is achievable if

-w deviates from c by not more than the conductor speed v0 . It is remarkable

that the limit v0 - W1 , c is not even approximately realizable in absence of

ether flow (Ni 0) since v0 << c for macroscopic bodies.

*1 .. i i, ' ' .~".:- ,. :-.:- , '" :---."". , " ¢,-,:", - -,
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DISPERSION ANTD FREQUENCY SHIFT IN SUBSTRATLM

In a homogeneous dielectric (ep) or the free ether space (e 9.1o of the

Maxwell frame 1@(0,ta0,-= -) in which the ether is at rest, the frequency and

wavelength of electromagnetic waves are interrelated by w = M jc where ]I 2t/X.

In an inertial frame 1('.,t,) with ether flow , the dispersion of monochromatic

waves of frequency w

k (_r,t) - Reke'' 0~wt (105)

in absence of space charges (p = 0) and electric currents (1 - 5) is determined

by the homogeneous wave equation (41) for the vector potential with ether flow w,

(a /at + ;.V) A c 7 A (106)

Substitution of Eq. (105) into Eq. (106) yields, sincelk 0 - (condition for

nontrivial solution), the dispersion equation w = w(k) for electromagnetic waves

in the ether:

4. -1/2
Ikic *.w , c w.(,) . (107)

4.

Thus, in presence of ether flow w, electromagnetic waves exhibit in the inertial

frame I a frequency shift

AW -4,.t0cs(k,) t09 18

4.

which vanishes for propagation k perpendicular to the ether flow w. Equation (108)

predicts a red-shift (Aw < 0) or a blue- shift (Aw > 0) for electromagnetic waves

propagating with a wave vector component j which is antiparallel or parallel to
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the ether velocity w. The physical reason for this frequency shift is the propa-

gation of waves and signals with the phase velocity

V P =c+ (V,)M(109)

in the inertial frame 1, i.e., the propagation of electromagnetic waves with the

velocity c relative to the moving ether. For laboratory and terrestrial applica-

tions, the frequency shift is in general small

Iw<,w for I1 < c . (110)

The red-shifts of spectral lines observed in distant galaxies have

been the subject of different explanations, with the Doppler red-shift due

to the rapid recession of the galaxies [Humason, 1956] being now

widely accepted. The longitudinal Doppler red-shift Aw - -I1IQ1, where

4. 
D--t.'

vQ is the velocity of the light source (galaxy), is of the same order-of-magnitude

as the longitudinal ether red-shift from Eq. (108), Aw = - *-J-W"J,.if w a vQ.

Since the ether probably "expands" as the masses of the universe recede (relative

to the earth), both the Doppler and ether red-shifts have to be considered in the

evaluation of the velocity vQ Z w of the gala.zes from the experimental red-shift

data3 0 cAA/A. These indicate ether drift velocities w - 10- c to 4xlO- c [Humason, 1956]

The ether red-shift represents, therefore, another physical effect for the

experimental Investigationof the substratum.

The presented applications provide an impression of the electromagnetic

phenomena which can be expected in presence of ether flow. The theory has signif-

Icant other applications in connection with the interaction of radiation and

charged particles with the ether under laboratory conditions.
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GALILEAN AND MEASURED COORDINATES

The generalized electromagnetic field equations (.14)-(19) with substra-

tum and their Galilei transformation (24)-(28) represent a field theory in terms

of absolute or Galilean space r - (x,y,z) and time t coordinates, i.e., the Gal-

ilean coordinate differences are the same in all inertial frames, r - inv and

At - inv. According to Lorentz [19091, a measuring rod resting parallel to the ether

velocity w in an inertial frame T(r,t,w) has there the reduced length L(w) =

Lo(I - w2/c2)1/2 due to the flattening of its microscopic Coulomb fields

by the ether flow (L° W proper rod length in the ether rest frame

70) . Recognizing that a clock can be visualized as a system reflecting a

light signal back and forth between two mirrors held apart by a rod, Builder

(1958 a,b ] demonstrated that the period of a clock is increased to T(w) =

To/(l - w2/c2)1/2 in the inertial frame T(r,t,w) with ether flow w', as the

combined result of the rod contraction and the anisotropy of light propagation

between the mirrors (To - proper clock period in the ether rest frame

70). For these physical reasons, the differences a of the absolute Galilean

coordinates r,t of the inertial frame 1(r,t,w) are related to the nasured (m)

space and time coordinate differences in this reference frame by (n and i to w)

+0 +11 **1 +1
arm yAr ,Ar m Ar ,Atm At/Y, (1)m m m

where

2/c2)1/2 0 < C (112)

The measured coordinates and tm vary in accordance with the Y(W) of the

respective inertial frame . For mathematical (y-1 < w) and physical (violation

of causality principle) reasons, the ether speeds are restricted to values

' 0 4 Iw' < c (in agreement with observation). Since the scaling factor y(w) is a

constant for a given inertial frame Y(r,t,w), the calculation of the measured
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(m) coordinates from the Galilean coordinates, and vice versa, by means of

Eqs. (111) - (112) is elementary in applications.

In order to illustrata the use of the Galilean space and time coordi-

nates, the Doppler effect shall be analyzed (within the frame of the presented

theory) for an emitter A and a receiver B, which move along the x-axis with

the velocities u Z 0 and v Z 0 relative to the ether frame O , respectively.

The Galilean position coordinates of A and B are at the absolute time t > 0

of the ether frame 7o

xA(t) a + ut , xB(t) = b + vt , (113)

where a and b are the initial positions. The Galilean time t is counted by

similar (synchronized) clocks, distributed over the ether frame Yo (isotropic

light propagation). The time periods of the emitter and receiver shall be the

same, TA = T - TB, when A and B are at rest in o Let A emit signals with

period TA at the times

tn Tt , n - 0,1,2, (114)

At a time t > tn, the n-th signal emitted by A reaches the location on the

x-axis

xn(t) XA(tn) + C(t - tn) - a - (c -u)t n + ct. (115)

Accordingly, the n-th signal of the emitter A will hit the receiver B at a

time t* determined by x (tmt*) M X (t-t*), or
4n n n B ni

a - (c - u)t + ct* = b + vt* . (116)
n n n

Hence

- t* + nT* , n 0,l,2,. (117)

n 0 A
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where

t* t + (b - a)/(c - v) , .(118):

T* TA(C - u)/(c - v) (119)

Equation (119) indicates that the period TA of the emitter A is "observed" as

a period T* at the location of the receiver B. So far, the considerations

A

have been purely "classical" or "Galilean."

In experiments, one compares the period TB (measured at B) of the receiver
m

B with the period T* (measured at B, too) of the emitter A. According to Eqs.

(111) and (112)

T*- T*/(1 - u2 2 1/2 -B( 1 - v2/c2) 1 / 2

Ac m, TBm (120)

since A moves wiih the volocity u and B moves with the velocity v relative to

the ether, 10. By Eqs. (119) - (120), the measured period ratio is (TA = TB)

T /T* - ((c + u)(c - v)/(c - u)(c + v)]1 /2 (121)

If the relativistic relative velocity V of the moving points A(u) and B(v) is

introduced, Eq. (121) assumes the form

T /T* - [(c + V)/(c - V)]1 /2  (122)

Eta Am .(12

where

V - (u - v)/(l - uv/c 2 ) 2 (123)

Since the measured Doppler frequencies are defined by v* - 1/T* and v.

1/TBm, Eq. (122) formally agrees with the Doppler effect of the special rela-

-ti ity theory (Whittaker, 1951; Stratton, 1941]

E U [(c + V)/(c - V)]I /2  (124)

. . . . . . . . . .
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Thus, V ? V for V , 0, depending on whether the emitter A moves towards

(u > v) or away from (u < v) the moving receiver B. If A and B have the samd

velocity, no Doppler effect occurs, v* - v for u = v or V = 0.

It is remarkable that the absolute velocities u of A and v of B rela-

tive to the ether frame 7o cannot be determined by Doppler measurements. The

measured frequency ratio v/v gives via Eq. (124) only the relative rela-
* Am Bm

tivistic velocity V, since Eq. (123) provides a manifold of solutions (u,v)

for any measured value V.

As another illustration of the Galilean relativity physics, it is

recalled that the Galilean ideas for anisotropic light propagation parallel

(0) and perpendicular (1) to the ether velocity w yield for the fringe shift

A - At of the Michelson-Morley (1887] experiment.

11 2 2-1 1 2 21/At - (21c) (1 - w c ) - L (1 - w /c )_ 2 . (125)

According to Eqs. (111) and (112), the phase difference vanishes exactly since

the mirror distance L is Lorentz contracted whereas the mirror distance LI is

not Lorentz contracted,

* II2 2 1/2
At - 0 for Lo(l - c2) L- w L . (126)0 0

The experimental result At = 0 lead Lorentz via Eq. (125) to the discovery of

the physical length contraction of material bodies moving relative to the ether

with a velocity -W.

Thus, it is recognized that the Galilean concepts of space and time,

extended with the help of the length contraction of Lorentz and the time dila-

tation of Builder, explain the Michelson-Morley type interferometer and also

Doppler effect measurements, i.e., even their most recent and highly accurate

versions [Jaseja et al., 1964; Vessot and Levine, 19791.

i

- - ' S- _ 2 v N, " " * ' ' *- **
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The Michelson-Morley maser interference experiment of Jaseja et al (19b4]

agrees with Eq. (126) up to terms of order 10-3 (v/c)2 where V0 is the orbital

velocity of the earth relative to the ether. The maser Doppler measurements

of Vessot etal (1972 are inexcellent accord with Eq. (124) since these permit

to infer an anisotropy of light propagation which is only of the order 41c/c

4 10- 8 . These investigators believe that the observed, small effects are

explainable bymeans ofthe general theory of relativity. The latter possibility

cannot be discussed here.

4,* ' . .- - --
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CONCLUSION

The original 4axwell's equations for the ether rest frame are generalized

to electromagnetic field equations for arbitrary inertial frames, in which the

ether is in a state of motion, # f. In connection with this theory, we

arrive at the following deductions.

The electromagnetic field equations with ether flow w are G-lilei covariant,

and reduce to the Maxwell equations in the limit w/c - i. Thus, Maxwell's conjec-

ture that his equations hold in a frame of reference with resting ether is recon-

firmed. Maxwell's equations are not Galilei covariant, since they do not refer

to an arbitrary inertial frame with moving ether, w .

Electromagnetic signals propagate isotropically with the speed of light

c - (i)-i/2 relative to the (moving or resting) ether. Relative to inertial

frames with ether flow W, electromagnetic signals propagate anisotropically.

The Rignal velocity is independent of the dynamics of the emitting source, which

is typical for wave propagation in a carrier (ether).

In inertial frames with ether flow, the dispersion w - () of electro-

magnetic waves is changed, i.e., an electromagnetic wave of wave vector t experi-

ences a blue - or red - shift A - t. ; 0 for propagation with a wave vector

component i parallel (>) or antiparallel (<) to the ether velocity iW. In electro-

magnetic wave phenomena, the ratio of electric and magnetic field strengths

11l/1I - c + 1 c, is increased by the ether flow depending on whether w =
Z0.

The electromagnetic ether has been incorrectly linked with an "absolute

rest system" since Maxwell (Whittaker, 19091. The substratum is a physical con-

cept [Ives, 1952; Kaempffer, 19531 whereas absolute rest is a methaphysical con-

cept, and these should, therefore, not be intermixed. Within the presented

theory, we have only assumed that the ether has different drift velocities w

Lwza6'J " % .- . . '.', "' ' - - .- i "
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in different inertial frames, and that the Galilean relativity principle is

valid [Mansouri and Sexl, 19771.

The electromagnetic field equations (14) - (19) with substratum flow w and

their Galilei transformations represent a field theory in terms of absolute

space r - (x,y,z) and time t coordinates. The transformations (ill) - (112)

indicate how these are related to the measured space and time coordinates as a

result of length contraction and time dilatation determined by the Lorentz

measure y = (1 - /c2 ) 12. As shown, our theory is in agreement with the

Michelson-Morley an Doppler effect experiments.

The infamous difficulties of the Lorentz covariant and ether-free special

theory of relativity (applicability to point particles only, violation of cau-

sality principle for extended particles, infinite self-energy and self-acceler-

ation of electrons, infinite zero-Doint energy density of vacuum, twin paradox,

etc) are removed by adopting a covariance principle combatible with an electro-

magnetic ether. The abandonment of Lorentz covariance permits the-existence of

extended particles and, thus, eleminates infinite self-energy and self-acceler-

ation of the relativistic point particle. The introduction of the ether and a

minimum length in quantum electrodynamics gives a finite zero-point energy densi-

ty of the vacuum [Winterberg, 19841. Only that twin, who moves relative to the

ether, experiences an increased life time, etc.

In addition, the presented theory Justufies the widespread use of non-

relativistic electrodynamics for the analysis of moving conductors in electrical

engineering, magnetohydrodynamics, and plasma physics [Stratton, 1941; Wilhelm,

1983,1984]. We have considered here only the transformation of Maxwell's

equations to inertial frames. The theoretical foundations for transforming

Maxwell's equations to accelerated reference frames have been laid by Kottler
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[1922 a,b], Cartan [19241, van Dantzig [1934], Shouten and Hantjes [19341, and

in particular Post [1962, 1967, 1972, 1979]. Electromagnetic ether effects In

rotating systems are important for Sagnac interferometers and ring lasers,

electromagnetic sensing of absolute rotation, and Sagnac type gyroscopes for

navigation, as will be shown in further communications.
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CAPT tO:: S

Fig. 1: Galilei transformation from inertial frame (r0,tow 0=O) with

resting substratum to an inertial frame rtw)with streaming

-~ -rsubstratum w - -u, where moves relative to o0 with velocity i

(08 - 0 for t* t - 0).

Fig. 2: Galilei transformation from inertial frame Y(r,t,w) to inertial

frame 70 ',t',iw'). where Y' moves relative to 7with velocity

(0 - 0' for t - t' -0).

Fig. 3: Magnetic -field pulse B(x,t) (in substratum flow w) with wave front

at x - (w,, + c t produced by switching on a current W~(t - JH Wt

on the surface x - 0 of a conductor a.

Fig. 4: Magnetic field pulse i(x,t) (in substratum flow w)with wave front

at x -( + c)t produced by the motion v(t)- v0 H(t)of a conducting

piston a transverse to a magnetic field B0. into the space x > 0.
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Fig. 1: Galilei transformation from inertial frame [(t-,'-) with

resting substratum to an inertial frame 1(r,tw) with streaming

substratum w = -u, where moves relative to with velocity u

(O° - 0 for t" - 0).
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Fig. 2: Calilei transformation from inertial frame 1(,t,) to inertial

rame~ ~ w'1,' > to inertia"
frame R',tlW'), where F' moves relative to with velocity u

(0 - 0' for t a t' a 0).
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Fig. 3: Magnetic field pulse B(x,t) (in substratum flow -w) with wave front

at x - (Wl + c)t produced by switching on a current * (t) IH(t)

on the surface x - 0 of a conductor a.
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Fig. 4: Magnetic field pulse i(x,t) (in substratum flow Z) with wave front

at x - (vil + c)t produced by the motion v(t)=H(t)of a conducting

piston a transverse to a magnetic field to into the space x ) 0.
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